Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; : 7244-7253, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38976358

RESUMO

Conical intersections (CIs) are pivotal in many photochemical processes. Traditional quantum chemistry methods, such as the state-average multiconfigurational methods, face computational hurdles in solving the electronic Schrödinger equation within the active space on classical computers. While quantum computing offers a potential solution, its feasibility in studying CIs, particularly on real quantum hardware, remains largely unexplored. Here, we present the first successful realization of a hybrid quantum-classical state-average complete active space self-consistent field method based on the variational quantum eigensolver (VQE-SA-CASSCF) on a superconducting quantum processor. This approach is applied to investigate CIs in two prototypical systems─ethylene (C2H4) and triatomic hydrogen (H3). We illustrate that VQE-SA-CASSCF, coupled with ongoing hardware and algorithmic enhancements, can lead to a correct description of CIs on existing quantum devices. These results lay the groundwork for exploring the potential of quantum computing to study CIs in more complex systems in the future.

2.
J Mol Histol ; 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38801643

RESUMO

Osteoporosis is a progressive skeletal disease which is characterized by reduced bone mass and degradation of bone microstructure. Mesenchymal stem cells (MSCs) have the potential to inhibit osteoporosis since they are multipotent stem cells that can differentiate into multiple types of cells including osteoblasts. Hence the mechanism of osteogenic differentiation of MSCs deserves comprehensive study. Here we report that KLF9 is a novel regulator in osteogenic differentiation of MSCs. We observed that depletion of KLF9 can largely compromise the osteogenic differentiation ability of MSCs. In addition, we revealed that inhibition of the PI3K-Akt pathway could also affect osteogenic differentiation since KLF9 depletion inhibits PI3K expression. Finally, we discovered that KLF9 expression can be induced by dexamethasone which is an essential component in osteogenic induction medium. Taken together, our study provides new insights into the regulatory role of KLF9 in osteogenic differentiation of MSCs.

3.
J Chem Theory Comput ; 20(5): 1912-1922, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38354395

RESUMO

Variational wave function ansätze are at the heart of solving quantum many-body problems in physics and chemistry. Previous designs of hardware-efficient ansatz (HEA) on quantum computers are largely based on heuristics and lack rigorous theoretical foundations. In this work, we introduce a physics-constrained approach for designing HEA with rigorous theoretical guarantees by imposing a few fundamental constraints. Specifically, we require that the target HEA to be universal, systematically improvable, and size-consistent, which is an important concept in quantum many-body theories for scalability but has been overlooked in previous designs of HEA. We extend the notion of size-consistency to HEA and present a concrete realization of HEA that satisfies all these fundamental constraints while only requiring linear qubit connectivity. The developed physics-constrained HEA is superior to other heuristically designed HEA in terms of both accuracy and scalability, as demonstrated numerically for the Heisenberg model and some typical molecules. In particular, we find that restoring size-consistency can significantly reduce the number of layers needed to reach a certain accuracy. In contrast, the failure of other HEA to satisfy these constraints severely limits their scalability to larger systems with more than 10 qubits. Our work highlights the importance of incorporating physical constraints into the design of HEA for efficiently solving many-body problems on quantum computers.

4.
Front Neurosci ; 17: 1146175, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37304022

RESUMO

Data harmonization is a key step widely used in multisite neuroimaging studies to remove inter-site heterogeneity of data distribution. However, data harmonization may even introduce additional inter-site differences in neuroimaging data if outliers are present in the data of one or more sites. It remains unclear how the presence of outliers could affect the effectiveness of data harmonization and consequently the results of analyses using harmonized data. To address this question, we generated a normal simulation dataset without outliers and a series of simulation datasets with outliers of varying properties (e.g., outlier location, outlier quantity, and outlier score) based on a real large-sample neuroimaging dataset. We first verified the effectiveness of the most commonly used ComBat harmonization method in the removal of inter-site heterogeneity using the normal simulation data, and then characterized the effects of outliers on the effectiveness of ComBat harmonization and on the results of association analyses between brain imaging-derived phenotypes and a simulated behavioral variable using the simulation datasets with outliers. We found that, although ComBat harmonization effectively removed the inter-site heterogeneity in multisite data and consequently improved the detection of the true brain-behavior relationships, the presence of outliers could damage severely the effectiveness of ComBat harmonization in the removal of data heterogeneity or even introduce extra heterogeneity in the data. Moreover, we found that the effects of outliers on the improvement of the detection of brain-behavior associations by ComBat harmonization were dependent on how such associations were assessed (i.e., by Pearson correlation or Spearman correlation), and on the outlier location, quantity, and outlier score. These findings help us better understand the influences of outliers on data harmonization and highlight the importance of detecting and removing outliers prior to data harmonization in multisite neuroimaging studies.

5.
Emerg Med Int ; 2022: 6023261, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36311483

RESUMO

Hemostatic materials are very important for the treatment of a large number of bleeding trauma patients in battlefield and disaster environments. Different types of hemostatic materials need to be used for emergency hemostasis according to different injury parts and severity. At present, the first-aid hemostatic materials have been well applied to the bleeding of body surface wounds, limbs, and junctions, but there are still no ideal hemostatic materials in the early treatment of first aid for the deep and incompressible bleeding of thoracoabdominal cavity and visceral organs. This paper reviews the classification and mechanism of hemostatic materials, as well as the application and research progress in trauma emergency, so as to provide reference for the application of hemostatic materials in early first-aid emergency.

6.
Heliyon ; 8(3): e09105, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35846449

RESUMO

Jmjd6 is a conserved nuclear protein which possesses histone arginine demethylation and lysyl hydroxylase activity. Previous studies have revealed that Jmjd6 is essential for cell differentiation and embryo development. However, the role of Jmjd6 in mammalian ES cell identity and reprogramming has been unclear. Here we report that depletion of Jmjd6 not only results in downregulation of pluripotency genes but also is implicated in apoptosis, glycolysis, cell cycle and protein hydroxylation. We also revealed the reduction of BrdU incorporation in Jmjd6 depleted cells. Reprogramming efficiency of MEFs can be enhanced with Jmjd6 overexpression while the efficiency was reduced upon Jmjd6 depletion. Together, these results suggest that Jmjd6 can regulate ES cell homeostasis and enhance somatic cell reprogramming.

7.
J Phys Chem Lett ; 13(11): 2653-2660, 2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35297633

RESUMO

It is well-known that thermally activated delayed fluorescence (TADF) is always generated from charge-transfer (CT) excited states in donor-acceptor (D-A) systems, which limits its application owing to a slow radiative process and a small stimulated emission cross section. Herein, a design strategy is proposed for realizing TADF from a locally excited (LE) state without a typical donor-acceptor type structure through controlling the intersystem crossing (ISC) and reverse intersystem crossing (RISC) processes between the lowest excited singlet with LE character and higher triplet states. Using this strategy, a boron difluoride derivative is theoretically predicted and experimentally synthesized to exhibit locally excited TADF (LE-TADF) with a fairly large radiative rate of 1.12 × 108 s-1, extremely fast RISC rate of 5.09 × 1010 s-1, and a large stimulated emission cross section of 4.35 × 10-17 cm2, making this a promising organic amplified spontaneous emission (ASE) material. This work might open a new avenue to extend TADF materials, especially TADF laser emitters.

8.
Heliyon ; 8(1): e08664, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35028451

RESUMO

Post-translational modifications of histone proteins regulate a long cascade of downstream cellular activities, including transcription and replication. Cellular lineage differentiation involves large-scale intracellular signaling and extracellular context. In particular, histone modifications play instructive and programmatic roles in central nervous system development. Deciphering functions of histone could offer feasible molecular strategies for neural diseases caused by histone modifications. Here, we review recent advances of in vitro and in vivo studies on histone modifications in neural differentiation.

9.
Angew Chem Int Ed Engl ; 60(33): 18059-18064, 2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34075684

RESUMO

Control of excited-state dynamics is key in tuning room-temperature phosphorescence (RTP) and thermally activated delayed fluorescence (TADF) emissions but is challenging for organic luminescent materials (OLMs). We show the regulation of TADF and RTP emissions of a boron difluoride ß-acetylnaphthalene chelate (ßCBF2 ) by controlling the excited-state dynamics via its J- and H-aggregation states. Two crystalline polymorphs emitting green and red light have been controllably obtained. Although both monoclinic, the green and red crystals are dominated by J- and H-aggregation, respectively, owing to different molecular packing arrangements. J-aggregation significantly reduces the energy gap between the lowest singlet and triplet excited states for ultra-fast reverse intersystem crossing (RISC) and enhances the radiative singlet decay, together leading to TADF. The H-aggregation accelerates the ISC and suppresses the radiative singlet decay, helping to stabilize the triplet exciton for RTP.

10.
Organogenesis ; 16(4): 137-148, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33236954

RESUMO

Stem cell and tissue engineering-based therapies for acute liver failure (ALF) have been limited by the lack of an optimal cell source. We aimed to determine the suitability of human parthenogenetic embryonic stem cells (hPESCs) for the development of strategies to treat ALF. We studied the ability of human parthenogenetic embryonic stem cells (hPESCs) with high whole-genome SNP homozygosity, which were obtained by natural activation during in vitro fertilization (IVF), to differentiate into functional hepatocyte-like cells in vitro by monolayer plane orientation. hPESCs were induced on a single-layer flat plate for 21 d in complete medium with the inducers activin A, FGF-4, BMP-2, HGF, OSM, DEX, and B27. Polygonal cell morphology and binuclear cells were observed after 21 d of induction by using an inverted microscope. RT-qPCR results showed that the levels of hepatocyte-specific genes such as AFP, ALB, HNF4a, CYP3A4, SLCO1B3, and ABCC2 significantly increased after induction. Immunocytochemical assay showed CK18 and Hepa expression in the induced cells. Indocyanine green (ICG) staining showed that the cells had the ability to absorb and metabolize dyes. Detection of marker proteins and urea in cell culture supernatants showed that the cells obtained after 21 d of induction had synthetic and secretory functions. The typical ultrastructure of liver cells was observed using TEM after 21 d of induction. The results indicate that naturally activated hPESCs can be induced to differentiate into hepatocellular cells by monolayer planar induction.


Assuntos
Diferenciação Celular , Células-Tronco Embrionárias/citologia , Hepatócitos/citologia , Biomarcadores/metabolismo , Terapia Baseada em Transplante de Células e Tecidos , Células Cultivadas , Regulação da Expressão Gênica no Desenvolvimento , Células Hep G2 , Humanos , Proteína 2 Associada à Farmacorresistência Múltipla , Partenogênese
11.
J Phys Chem Lett ; 11(19): 8246-8251, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32915577

RESUMO

Organic room-temperature phosphorescence (ORTP) has been demonstrated successfully in solids. In contrast, solution-phase ORTP is rarely achieved, because the T1 → S0 phosphorescence is too slow to compete against nonradiative decay and the oxygen-quenching effect. Here, we reported that suppression of Kasha's rule is a strategy to achieve solution-phase ORTP from the high-lying T2 state by spatially separating T2 and T1 on different parts of the molecule (CzCbDBT) composed of carbonyl (Cb), dibenzothiophene (DBT), and carbazole moiety (Cz). On one hand, intersystem crossing (ISC) is much faster from S1 to T2 than that to T1, owing to the small energy-gap ΔES1-T2 and large spin-orbital coupling ξS1-T2. On the other hand, T2 → T1 internal conversion is inhibited owing to spatial separation, i.e., T2 on CbDBT and T1 on Cz, respectively. Also, combination of very fast radiative decay from T2 to S0 owing to large ξT2-S0, the efficient solution-phase ORTP emission from the T2 state was finally achieved.

12.
Ann Clin Lab Sci ; 50(4): 468-473, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32826243

RESUMO

OBJECTIVE: This study aimed to investigate the effects of combined activin A and Wnt3a treatment on definitive endoderm (DE) differentiation from human parthenogenetic embryonic stem cells (hPESCs). METHODS: hPESCs on human foreskin fibroblast feeder layers were induced to differentiate into DE using a combination of 50 ng/ml activin A and 25 ng/ml Wnt3a. Expression of the DE markers CXCR4, E-cadherin (ECD), Sox17, and Goosecoid (Gsc) were examined using flow cytometry and real-time quantitative PCR. RESULTS: The combination of activin A and Wnt3a significantly enhanced the percentages of CXCR4+, ECD+, Sox17+, and Gsc+ cells, culminating on day 2 of induction. This combined use promoted DE differentiation from hPESCs in vitro. CONCLUSIONS: Through the combination treatment using activin A and Wnt3a, DE differentiation from hPESCs culminated at 48 h, which can be regarded as the optimal time-point to induce differentiation of endodermal cells such as pancreatic, liver, and intestinal cells.


Assuntos
Ativinas/farmacologia , Diferenciação Celular/efeitos dos fármacos , Proteína Wnt3A/farmacologia , Células Cultivadas , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/metabolismo , Endoderma/citologia , Endoderma/efeitos dos fármacos , Endoderma/metabolismo , Humanos , Transdução de Sinais/efeitos dos fármacos , Proteína Wnt3A/metabolismo
13.
ACS Appl Mater Interfaces ; 12(24): 27493-27498, 2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32431143

RESUMO

Creating nano-to-macroscopic-sized artificial actuators in response to light has been a challenging issue. Herein, we describe the design, synthesis, and operation of a photomechanical molecular crystal (PMMC) that exhibits well-controlled multiple photo-driven motions, including translation, rotation, and jumping, by adjusting the irradiation sites. Theoretical calculation discloses that conversion of light energy into macroscopic motion occurs through a molecular conformation change between the excited and ground states mediated by ultrafast conical internal conversion, making the photomechanical/recovery responses a rapid cycle. Therefore, our PMMCs can complete the directional and continuous motions using only one laser beam. We also demonstrated the actuated rotation of a cross-shaped sample by rotating the polarization of the laser beam at a rate of >2 Hz, like a dancer under a spotlight. This finding could lead to remote-controlled micrometer-sized vehicles and valves on solid substrates.

14.
Micromachines (Basel) ; 10(9)2019 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-31547397

RESUMO

Cell mechanical properties have been identified to characterize cells pathologic states. Here, we report our work on high-throughput mechanical phenotyping of androgen-sensitive and non-sensitive human prostate cancer cell lines based on a morphological rheological microfluidic method. The theory for extracting cells' elastic modulus from their deformation and area, and the used experimental parameters were analyzed. The mechanical properties of three types of prostate cancer cells lines with different sensitivity to androgen including LNCaP, DU145, and PC3 were quantified. The result shows that LNCaP cell was the softest, DU145 was the second softest, and PC3 was the stiffest. Furthermore, atomic force microscopy (AFM) was used to verify the effectiveness of this high-throughput morphological rheological method.

15.
Microsc Res Tech ; 82(11): 1843-1851, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31361070

RESUMO

Atomic force microscope (AFM) has been widely used in the biological field owing to its high sensitivity (subnanonewton), high spatial resolution (nanometer), and adaptability to physiological environments. Nowadays, force volume (FV) and peakforce quantitative nanomechanical (QNM) are two distinct modes of AFM used in biomechanical research. However, numerous studies have revealed an extremely confusing phenomenon that FV mode has a significant difference with QNM in determining the mechanical properties of the same samples. In this article, for the case of human benign prostatic hyperplasia cells (BPH) and two cancerous prostate cells with different grades of malignancy (PC3 and DU145), the differences were compared between FV and QNM modes in detecting mechanical properties. The results show measured Young's modulus of the same cells in FV mode was much lower than that obtained by QNM mode. Combining experimental results with working principles of two modes, it is indicated that surface adhesion is highly suspected to be a critical factor resulting in the measurement difference between two modes. To further confirm this conjecture, various weight ratios of polydimethylsiloxane (PDMS) were assessed by two modes, respectively. The results show that the difference of Young's modulus measured by two modes increases with the surface adhesion of PDMS, confirming that adhesion is one of the significant elements that lead to the measurement difference between FV and QNM modes.


Assuntos
Adesão Celular/fisiologia , Módulo de Elasticidade/fisiologia , Fenômenos Mecânicos , Microscopia de Força Atômica/métodos , Linhagem Celular Tumoral , Dimetilpolisiloxanos/química , Humanos , Células PC-3 , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...