Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Microbiol ; 9(5): 1325-1339, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38589468

RESUMO

Drug-resistant fungal infections pose a significant threat to human health. Dual-targeting compounds, which have multiple targets on a single pathogen, offer an effective approach to combat drug-resistant pathogens, although ensuring potent activity and high selectivity remains a challenge. Here we propose a dual-targeting strategy for designing antifungal compounds. We incorporate DNA-binding naphthalene groups as the hydrophobic moieties into the host defence peptide-mimicking poly(2-oxazoline)s. This resulted in a compound, (Gly0.8Nap0.2)20, which targets both the fungal membrane and DNA. This compound kills clinical strains of multidrug-resistant fungi including Candida spp., Cryptococcus neoformans, Cryptococcus gattii and Aspergillus fumigatus. (Gly0.8Nap0.2)20 shows superior performance compared with amphotericin B by showing not only potent antifungal activities but also high antifungal selectivity. The compound also does not induce antimicrobial resistance. Moreover, (Gly0.8Nap0.2)20 exhibits promising in vivo therapeutic activities against drug-resistant Candida albicans in mouse models of skin abrasion, corneal infection and systemic infection. This study shows that dual-targeting antifungal compounds may be effective in combating drug-resistant fungal pathogens and mitigating fungal resistance.


Assuntos
Antifúngicos , Testes de Sensibilidade Microbiana , Antifúngicos/farmacologia , Antifúngicos/química , Animais , Camundongos , Humanos , Farmacorresistência Fúngica Múltipla , Modelos Animais de Doenças , Cryptococcus neoformans/efeitos dos fármacos , Aspergillus fumigatus/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Naftalenos/farmacologia , Naftalenos/química , Oxazóis/farmacologia , Oxazóis/química , Candida/efeitos dos fármacos , Micoses/tratamento farmacológico , Micoses/microbiologia
3.
Artigo em Inglês | MEDLINE | ID: mdl-38087181

RESUMO

The blood-brain barrier (BBB) poses a major obstacle in the treatment of all types of central nervous system (CNS) diseases. Small interfering RNA (siRNA) offers in principle a promising therapeutic approach by downregulating disease-related genes via RNA interference. However, the BBB is a formidable barrier for macromolecules such as nucleic acids. In an effort to develop a brain-targeted strategy for siRNA delivery systems formed by electrostatic interactions with cationic polymers (polyplexes (PXs)), we investigated the suitability of the well-known surfactant-based approach for Apolipoprotein E (ApoE)-functionalization of nanoparticles (NPs). The aim of this present work was to investigate if ApoE coating of siRNA PXs formed with cationic branched 25-kDa poly(ethyleneimine) (b-PEI) and nylon-3 polymers without or after precoating with polysorbate 80 (PS 80) would promote successful delivery across the BBB. We utilized highly hydrophobic NM0.2/CP0.8 nylon-3 polymers to evaluate the effects of hydrophobic cyclopentyl (CP) subunits on ApoE binding efficacy and observed successful ApoE binding with and without PS 80 precoating to the nylon-3 but not the PEI polyplexes. Accordingly, ApoE-coated nylon-3 polyplexes showed significantly increased uptake and gene silencing in U87 glioma cells but no benefit in vivo. In conclusion, further optimization of ApoE-functionalized polyplexes and more sophisticated in vitro models are required to achieve more successful in vitro-in vivo translation in future approaches.

4.
Int J Pharm ; 643: 123257, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37482228

RESUMO

In the field of non-viral drug delivery, polyplexes (PXs) represent an advanced investigated and highly promising tool for the delivery of nucleic acids. Upon encountering physiological fluids, they adsorb biological molecules to form a protein corona (PC), that influence PXs biodistribution, transfection efficiencies and targeting abilities. In an effort to understand protein - PX interactions and the effect of PX material on corona composition, we utilized cationic branched 10 kDa polyethyleneimine (b-PEI) and a hydrophobically modified nylon-3 polymer (NM0.2/CP0.8) within this study to develop appropriate methods for PC investigations. A centrifugation procedure for isolating hard corona - PX complexes (PCPXs) from soft corona proteins after incubating the PXs in fetal bovine serum (FBS) for PC formation was successfully optimized and the identification of proteins by a liquid chromatography-tandem mass spectrometry (LC-MS-MS) method clearly demonstrated that the PC composition is affected by the underlying PXs material. With regard to especially interesting functional proteins, which might be able to induce active targeting effects, several candidates could be detected on b-PEI and NM0.2/CP0.8 PXs. These results are of high interest to better understand how the design of PXs impacts the PC composition and subsequently PCPXs-cell interactions to enable precise adjustment of PXs for targeted drug delivery.


Assuntos
Técnicas de Transferência de Genes , Coroa de Proteína , Coroa de Proteína/metabolismo , DNA/química , Distribuição Tecidual , Transfecção , Polietilenoimina/química
5.
Research (Wash D C) ; 6: 0051, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36930779

RESUMO

Host defense peptides (HDPs) are one of the potentially promising agents for infection diseases due to their broad spectrum and low resistance rate, but their clinical applications are limited by proteolytic instability, high-cost, and complicated synthesis process. Here, we report a host-defense-peptide-mimicking ß-peptide polymer that resists proteolysis to have enhanced the activity under physiological conditions, excellent antimicrobial efficiency even at high density of bacteria, and low cost for preparation. The ß-peptide polymer demonstrated quorum sensing (QS) interference and bactericidal effect against both bacterial communities and individual bacterium to simultaneously block bacterial communication and disrupt bacterial membranes. The hierarchical QS network was suppressed, and main QS signaling systems showed considerably down-regulated gene expression, resulting in excellent biofilm eradication and virulence reduction effects. The dual-modal antibacterial ability possessed excellent therapeutic effects in Pseudomonas aeruginosa pneumonia, which could inhibit biofilm formation and exhibit better antibacterial and anti-inflammatory efficiency than clinically used antibiotics, levofloxacin. Furthermore, the ß-peptide polymer also showed excellent therapeutic effect Escherichia coli pyogenic liver abscess. Together, we believed that the ß-peptide polymer had a feasible clinical potential to treat bacterial infection diseases.

6.
Chembiochem ; 24(3): e202200368, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36226554

RESUMO

Peptide mimics, possessing excellent biocompatibility and protease stability, have attracted broad attention and research in the biomedical field. ß-Peptides and ß-peptoids, as two types of vital peptide mimics, have demonstrated great potential in the field of foldamers, antimicrobials and protein binding, etc. Currently, the main synthetic strategies for ß-peptides and ß-peptoids include solid-phase synthesis and polymerization. Among them, polymerization in one-pot can minimize the repeated separation and purification used in solid-phase synthesis, and has the advantages of high efficiency and low cost, and can synthesize ß-peptides and ß-peptoids with high molecular weight. This review summarizes the polymerization methods for ß-peptides and ß-peptoids. Moreover, future developments of the polymerization method for the synthesis of ß-peptides and ß-peptoids will be discussed.


Assuntos
Anti-Infecciosos , Peptoides , Peptoides/química , Polimerização , Peptídeos , Peptídeo Hidrolases
7.
Macromol Rapid Commun ; 43(23): e2200575, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35978269

RESUMO

Hybrid peptides with heterogeneous backbone are a class of peptide mimics with adjustable proteolytic stability obtained from incorporating unnatural amino acid residues into peptide backbone. α/ß-peptides and peptide/peptoid hybrids are two types of hybrid peptides that are widely studied for diverse applications, and several synthetic methods have been developed. In this mini review, the advance in hybrid peptide synthesis is summarized, including solution-phase method, solid-phase method, and novel polymerization method. Conventional solution-phase method and solid-phase method generally result in oligomers with defined sequences, while polymerization methods have advantages in preparing peptide hybrid polymers with high molecular weight with simple operation and low cost. In addition, the future development of polymerization method to realize the control of the peptide hybrid polymer sequence is discussed.


Assuntos
Peptoides , Peptoides/química , Peptídeos/química , Sequência de Aminoácidos , Polimerização , Polímeros/química
8.
Biomater Sci ; 10(16): 4515-4524, 2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35788576

RESUMO

Extensive use of antibiotics accelerates the emergence of drug-resistant bacteria and related infections. Host defense peptides (HDPs) have been studied as promising and potential therapeutic candidates. However, their clinical applications of HDPs are limited due to their high cost of synthesis and low stability upon proteolysis. Therefore, HDP mimics have become a new approach to address the challenge of bacterial resistance. In this work, we design the amphiphilic peptoid polymers by mimicking the positively charged and hydrophobic structures of HDPs and synthesize a series of cyclic peptoid polymers efficiently via the polymerization on α-amino acid N-substituted glycine N-carboxyanhydrides (α-NNCAs) using 1,8-diazabicycloundec-7-ene (DBU) as the initiator. The optimal cyclic peptoid polymer, poly(Naeg0.7Npfbg0.3)20, displays strong antibacterial activities against drug-resistant bacteria, but low hemolysis and cytotoxicity. In addition, the mode-of-action study indicates that the antibacterial mechanism is associated with bacterial membrane interaction. Our study implies that HDP mimicking cyclic peptoid polymers have potential application in treating drug-resistant bacterial infections.


Assuntos
Peptoides , Antibacterianos/química , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos , Bactérias , Testes de Sensibilidade Microbiana , Peptoides/química , Peptoides/farmacologia , Polímeros/química , Polímeros/farmacologia
9.
J Am Chem Soc ; 144(16): 7283-7294, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35420800

RESUMO

Multidrug resistance to chemotherapeutic drugs is one of the major causes for the failure of cancer treatment. Therefore, there is an urgent need to develop anticancer agents that can combat multidrug-resistant cancers effectively and mitigate drug resistance. Here, we report a rational design of anticancer heterochiral ß-peptide polymers as synthetic mimics of host defense peptides to combat multidrug-resistant cancers. The optimal polymer shows potent and broad-spectrum anticancer activities against multidrug-resistant cancer cells and is insusceptible to anticancer drug resistance owing to its membrane-damaging mechanism. The in vivo study indicates that the optimal polymer efficiently inhibits the growth and distant transfer of solid tumors and the metastasis and seeding of circulating tumor cells. Moreover, the polymer shows excellent biocompatibility during anticancer treatment on animals. In addition, the ß-peptide polymers address those prominent shortcomings of anticancer peptides and have superior stability against proteolysis, easy synthesis in large scale, and low cost. Collectively, the structural diversity and superior anticancer performance of ß-peptide polymers imply an effective strategy in designing and finding anticancer agents to combat multidrug-resistant cancers effectively while mitigating drug resistance.


Assuntos
Antineoplásicos , Neoplasias , Animais , Peptídeos Catiônicos Antimicrobianos , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Neoplasias/tratamento farmacológico , Polímeros/química , Polímeros/farmacologia
10.
Adv Sci (Weinh) ; 9(14): e2104871, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35307990

RESUMO

Potent and selective antifungal agents are urgently needed due to the quick increase of serious invasive fungal infections and the limited antifungal drugs available. Microbial metabolites have been a rich source of antimicrobial agents and have inspired the authors to design and obtain potent and selective antifungal agents, poly(DL-diaminopropionic acid) (PDAP) from the ring-opening polymerization of ß-amino acid N-thiocarboxyanhydrides, by mimicking ε-poly-lysine. PDAP kills fungal cells by penetrating the fungal cytoplasm, generating reactive oxygen, and inducing fungal apoptosis. The optimal PDAP displays potent antifungal activity with minimum inhibitory concentration as low as 0.4 µg mL-1 against Candida albicans, negligible hemolysis and cytotoxicity, and no susceptibility to antifungal resistance. In addition, PDAP effectively inhibits the formation of fungal biofilms and eradicates the mature biofilms. In vivo studies show that PDAP is safe and effective in treating fungal keratitis, which suggests PDAPs as promising new antifungal agents.


Assuntos
Antifúngicos , Polímeros , Antifúngicos/química , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Candida albicans , Testes de Sensibilidade Microbiana , Peptídeos , Polímeros/química
11.
Small ; 18(12): e2104885, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35129309

RESUMO

Microbial infections and microbial resistance lead to a high demand for new antimicrobial agents. Quaternized polysaccharides are cationic antimicrobial candidates; however, the limitation of homogeneous synthesis solvents that affect the molecular structure and biological activities, as well as their drug resistance remains unclear. Therefore, the authors homogeneously synthesize a series of quaternized chitin (QC) and quaternized chitosan (QCS) derivatives via a green and effective KOH/urea system and investigate their structure-activity relationship and biological activity in vivo and in vitro. Their study reveals that a proper match of degree of quaternization (DQ) and degree of deacetylation (DD') of QC or QCS is key to balance antimicrobial property and cytotoxicity. They identify QCS-2 as the optimized antimicrobial agent with a DQ of 0.46 and DD' of 82%, which exhibits effective broad-spectrum antimicrobial properties, good hemocompatibility, excellent cytocompatibility, and effective inhibition of bacterial biofilm formation and eradication of mature bacterial biofilms. Moreover, QCS-2 exhibits a low propensity for development of drug resistance and significant anti-infective effects on MRSA in vivo comparable to that of vancomycin, avoiding excessive inflammation and promoting the formation of new blood vessels, hair follicles, and collagen deposition to thus expedite wound healing.


Assuntos
Anti-Infecciosos , Infecções Bacterianas , Quitosana , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Biofilmes , Quitosana/química , Farmacorresistência Bacteriana , Humanos , Micelas , Testes de Sensibilidade Microbiana
12.
Nat Commun ; 12(1): 5898, 2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34625571

RESUMO

Methicillin-Resistant Staphylococcus aureus (MRSA) induced infection calls for antibacterial agents that are not prone to antimicrobial resistance. We prepare protease-resistant peptoid polymers with variable C-terminal functional groups using a ring-opening polymerization of N-substituted N-carboxyanhydrides (NNCA), which can provide peptoid polymers easily from the one-pot synthesis. We study the optimal polymer that displays effective activity against MRSA planktonic and persister cells, effective eradication of highly antibiotic-resistant MRSA biofilms, and potent anti-infectious performance in vivo using the wound infection model, the mouse keratitis model, and the mouse peritonitis model. Peptoid polymers show insusceptibility to antimicrobial resistance, which is a prominent merit of these antimicrobial agents. The low cost, convenient synthesis and structure diversity of peptoid polymers, the superior antimicrobial performance and therapeutic potential in treating MRSA infection altogether imply great potential of peptoid polymers as promising antibacterial agents in treating MRSA infection and alleviating antibiotic resistance.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Peptoides/farmacologia , Polímeros/farmacologia , Animais , Biofilmes/efeitos dos fármacos , Biopolímeros/química , Biopolímeros/farmacologia , Bactérias Gram-Positivas/efeitos dos fármacos , Camundongos , Testes de Sensibilidade Microbiana , Peptoides/química , Polimerização , Polímeros/química , Infecções Estafilocócicas/tratamento farmacológico
13.
iScience ; 24(10): 103124, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34622171

RESUMO

The fascinating functions of proteins and peptides in biological systems have attracted intense interest to explore their mimics using polymers, including polypeptides synthesized from polymerization. The folding, structures and functions of proteins and polypeptides are largely dependent on their sequence. However, sequence-tunable polymerization for polypeptide synthesis is a long-lasting challenge. The application of polypeptides is also greatly hindered by their susceptibility to enzymatic degradation. Although poly-α/ß-peptide has proven to be an effective strategy to address the stability issue, the synthesis of poly-α/ß-peptide from polymerization is not available yet. Hereby, we demonstrate a living and controlled copolymerization on α-NCA and ß-NTA to prepare sequence-tunable poly-α/ß-peptides. This polymerization strategy shows a prominent solvent-driven characteristic, providing random-like copolymers of poly-α/ß-peptides in THF and block-like copolymers of poly-α/ß-peptides in a mixed solvent of CHCl3/H2O (95/5, v/v), and opens new avenues for sequence-tunable polymerization and enables facile synthesis of proteolysis tunable poly-α/ß-peptides for diverse applications.

14.
J Mater Chem B ; 9(25): 5092-5101, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34128037

RESUMO

Multidrug-resistant bacterial infections are a grand challenge to global medical and health systems. Therefore, it is urgent to develop versatile antibacterial strategies that can combat bacterial resistance without displaying toxicity. Here, we synthesize antibacterial polypeptide-conjugated gold nanoparticles that exhibit potent antibacterial activities against clinically isolated multiple drug resistance Gram-positive bacteria, such as methicillin-resistant Staphylococcus aureus, and excellent in vitro and in vivo biocompatibility. The antibacterial mechanism study indicates that over-production of reactive oxygen species results in the killing of bacteria. The overall antibacterial performance of these polypeptide-conjugated gold nanoparticles and the convenient synthesis of these polypeptides via lithium hexamethyldisilazide-initiated fast ring-opening polymerization on α-amino acid N-carboxyanhydride imply the potential application of this strategy in treating bacterial infections.


Assuntos
Antibacterianos/farmacologia , Ouro/farmacologia , Nanopartículas Metálicas/química , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Peptídeos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Ouro/química , Testes de Sensibilidade Microbiana , Peptídeos/química
15.
ChemMedChem ; 16(2): 309-315, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-32926562

RESUMO

Poly(2-oxazoline)s have excellent biocompatibility and have been used as FDA-approved indirect food additives. The inert property of the hydrophilic poly(2-oxazoline)s suggests them as promising substitutes for poly(ethylene glycol) (PEG) in various applications such as anti-biofouling agents. It was recently reported that poly(2-oxazoline)s themselves have antimicrobial properties as synthetic mimics of host defense peptides. These studies revealed the bioactive properties of poly(2-oxazoline)s as a new class of functional peptide mimics, by mimicking host defense peptides to display potent and selective antimicrobial activities against methicillin-resistant Staphylococcus aureus both in vitro and in vivo, without concerns about antimicrobial resistance. The high structural diversity, facile synthesis, and potent and tunable antimicrobial properties underscore the great potential of poly(2-oxazoline)s as a class of novel antimicrobial agents in dealing with drug-resistant microbial infections and antimicrobial resistance.


Assuntos
Antibacterianos/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Oxazóis/farmacologia , Peptídeos/farmacologia , Antibacterianos/química , Testes de Sensibilidade Microbiana , Oxazóis/química , Peptídeos/química
16.
Biomater Sci ; 8(24): 6883-6889, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32960197

RESUMO

Infections involving methicillin-resistant Staphylococcus aureus present great challenges, especially when biofilms and persister cells are involved. In this work, an α/ß chimeric polypeptide molecular brush (α/ß CPMB) is reported to show excellent performance in inhibiting the formation of biofilms and eradicating established biofilms. Additionally, the polymer brush efficiently killed metabolically inactive persister cells that are antibiotic-insensitive. Antimicrobial mechanism studies showed that α/ß CPMB causes membrane disturbance and a substantial increase in reactive oxygen species (ROS) levels to kill bacteria, and mesosome-like structure formation was also observed. Furthermore, the polymer brush was able to kill clinically isolated multidrug resistant Gram-positive bacteria with no risk of antimicrobial resistance. The α/ß CPMB has demonstrated great potential in addressing the great challenge of eradicating multidrug resistant Gram-positive bacterial infections.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Antibacterianos/farmacologia , Biofilmes , Farmacorresistência Bacteriana , Testes de Sensibilidade Microbiana , Peptídeos/farmacologia
17.
Angew Chem Int Ed Engl ; 59(16): 6412-6419, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32083767

RESUMO

Peptides have important biological functions. However, their susceptibility to proteolysis limits their applications. We demonstrated here for the first time, that poly(2-oxazoline) (POX) can work as a functional mimic of peptides. POX-based glycine pseudopeptides, a host defense peptide mimic, had potent activities against methicillin-resistant S. aureus, which causes formidable infections. The POX mimic showed potent activity against persisters that are highly resistant to antibiotics. S. aureus did not develop resistance to POX owning to the reactive oxygen species related antimicrobial mechanism. POX-treated S. aureus is sensitive to common antibiotics, demonstrating no observable antimicrobial pressure or cross-resistance in using antimicrobial POX. This study highlights POX as a new type of functional mimic of peptides and opens new avenues in designing and exploring peptide mimetics for biological functions and applications.


Assuntos
Anti-Infecciosos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Oxazóis/química , Peptidomiméticos/química , Anti-Infecciosos/síntese química , Anti-Infecciosos/química , Testes de Sensibilidade Microbiana , Peptidomiméticos/síntese química , Peptidomiméticos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/metabolismo
18.
Angew Chem Int Ed Engl ; 59(18): 7240-7244, 2020 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-32061180

RESUMO

Biocompatible and proteolysis-resistant poly-ß-peptides have broad applications and are dominantly synthesized via the harsh and water-sensitive ring-opening polymerization of ß-lactams in a glovebox or using a Schlenk line, catalyzed by the strong base LiN(SiMe3 )2 . We have developed a controllable and water-insensitive ring-opening polymerization of ß-amino acid N-thiocarboxyanhydrides (ß-NTAs) that can be operated in open vessels to prepare poly-ß-peptides in high yields, with diverse functional groups, variable chain length, narrow dispersity and defined architecture. These merits imply wide applications of ß-NTA polymerization and resulting poly-ß-peptides, which is validated by the finding of a HDP-mimicking poly-ß-peptide with potent antimicrobial activities. The living ß-NTA polymerization enables the controllable synthesis of random, block copolymers and easy tuning of both terminal groups of polypeptides, which facilitated the unravelling of the antibacterial mechanism using the fluorophore-labelled poly-ß-peptide.


Assuntos
Antibacterianos/farmacologia , Bacillus subtilis/efeitos dos fármacos , Peptídeos/farmacologia , Staphylococcus/efeitos dos fármacos , Água/química , Aminoácidos/química , Aminoácidos/farmacologia , Anidridos/química , Anidridos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Peptídeos/síntese química , Peptídeos/química , Polimerização , Compostos de Sulfidrila/química , Compostos de Sulfidrila/farmacologia
19.
ACS Infect Dis ; 6(3): 479-488, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-31922723

RESUMO

Multidrug-resistant (MDR) bacteria have emerged quickly and have caused serious nosocomial infections. It is urgent to develop novel antimicrobial agents for treating MDR bacterial infections. In this study, we isolated 45 strains of bacteria from hospital patients and found shockingly that most of these strains were MDR to antimicrobial drugs. This inspired us to explore antimicrobial peptide polymers as synthetic mimics of host defense peptides in combating drug-resistant bacteria and the formidable antimicrobial challenge. We found that peptide polymer 80:20 DM:Bu (where DM is a hydrophilic/cationic subunit and Bu is a hydrophobic subunit) displayed fast bacterial killing, broad spectrum, and potent activity against clinically isolated strains of MDR bacteria. Moreover, peptide polymer 80:20 DM:Bu displayed potent in vivo antibacterial efficacy, comparable to the performance of polymyxin B, in a Pseudomonas aeruginosa (P. aeruginosa) infected rat full-thickness wound model. The peptide polymer can be easily synthesized from ring-opening polymerization with remarkable reproducibility in structural properties and biological activities. The peptide polymer's potent and broad spectrum antimicrobial activities against MDR bacteria in vitro and in vivo, resistance to proteolysis, and high structural diversity altogether imply a great potential of peptide polymer 80:20 DM:Bu in antimicrobial applications as synthetic mimics of host defense peptides.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Bactérias/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla , Polímeros/química , Animais , Feminino , Testes de Sensibilidade Microbiana , Polímeros/farmacologia , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Infecção dos Ferimentos/tratamento farmacológico , Infecção dos Ferimentos/microbiologia
20.
Biomater Sci ; 8(2): 739-745, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31782423

RESUMO

Multidrug resistant (MDR) Pseudomonas aeruginosa has caused serious nosocomial infections owing to its high intrinsic resistance and ease of acquiring resistance to common antibiotics. There is an urgent need to develop antimicrobial agents against MDR Pseudomonas aeruginosa. Here we report a 27-mer peptide polymer 90 : 10 DLL : BLG, as a synthetic mimic of a host defense peptide, that displayed potent in vitro and in vivo activities against multiple strains of clinically isolated MDR Pseudomonas aeruginosa, performing even better than antibiotics within our study. This peptide polymer also showed negligible hemolysis and low cytotoxicity, as well as quick bacterial killing efficacy. The structural diversity of peptide polymers, their easy synthesis from lithium hexamethyldisilazide-initiated fast N-carboxyanhydride polymerization, and the excellent reproducibility of their chemical structure and biological profiles altogether suggested great potential for antimicrobial applications of peptide polymers as synthetic mimics of host defense peptides.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Peptídeos/farmacologia , Polímeros/farmacologia , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/efeitos dos fármacos , Animais , Antibacterianos/síntese química , Antibacterianos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Cinética , Testes de Sensibilidade Microbiana , Estrutura Molecular , Peptídeos/síntese química , Peptídeos/química , Polímeros/síntese química , Polímeros/química , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/isolamento & purificação , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...