Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Analyst ; 148(24): 6248-6252, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37929790

RESUMO

The environmental issues and health problems of waste plastics have attracted remarkable attention. It is quite important to convert waste plastics into high value-added electrochemical materials. Herein, four kinds of Co-based metal-organic frameworks (CoMOFs) were synthesized from poly(ethylene terephthalate) plastic, and their electrochemical applications were examined. A mixture of N,N-dimethylformamide (DMF) and H2O was used as the solvent, and hydrothermal reaction was employed. It is found that the surface area and porous structure of CoMOFs are closely related to the volume ratio of DMF/H2O. As a result, the prepared CoMOFs exhibit different catalytic enhancement activities toward the oxidation of p-phenylenediamine (PPD). Based on the solvent-controlled sensing performance of CoMOFs, a highly sensitive and rapid detection method has been developed for PPD, with a linear range from 0.05 to 8.0 µM. The detection limit was 45 nM, and the practical application in hair dye samples was successfully demonstrated.

2.
Anal Methods ; 14(26): 2616-2622, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35734888

RESUMO

In this paper, novel N-doped carbon dots (N-CDs) were prepared from fuchsin basic and ethylenediamine tetraacetic acid-disodium salt (EDTA-2Na). The N-CDs were characterized by a series of techniques and it was found that the average particle size was 2.75 nm, and the surface had functional groups such as -NH2 and -COOH. Interestingly, N-CDs exhibited a fast and sensitive response to malachite green (MG), which may be due to the inner filter effect (IFE). A method for the detection of MG in water samples from Jinyang Lake was developed using N-CDs, with a limit of detection (LOD) as low as 27.28 nM. Furthermore, N-CDs were utilized in the biological imaging of Arabidopsis thaliana.


Assuntos
Carbono , Pontos Quânticos , Limite de Detecção , Corantes de Rosanilina
3.
Anal Methods ; 13(45): 5523-5531, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34761756

RESUMO

Herein, bright blue-green fluorescent nitrogen and boron co-doped carbon dots (N, B-CDs) with a quantum yield (QY) up to 33.04% were synthesized viahydrothermal treatment from ammonium citrate tribasic and 3-aminophenylboronic acid. The synthesized N, B-CDs showed outstanding water solubility. According to the principle of the static quenching effect (SQE), the synthesized N, B-CDs were utilized as an efficient sensor for sensing Ag+. The linear range and limit of detection (LOD) of the sensor for Ag+ are 0.99-26.04 µM and 9.03 nM (3σ/m). The proposed method was successfully adopted to detect Ag+ in environmental water, which is of great significance to environmental detection. Furthermore, due to the excellent fluorescence performance, the N, B-CDs were found to be an effective tool for biological imaging and as a fluorescent ink, which widens the horizons for the multifunctional applications of N, B-CDs.


Assuntos
Boro , Tinta , Carbono , Corantes Fluorescentes , Nitrogênio
4.
Mikrochim Acta ; 188(10): 325, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34490491

RESUMO

Water soluble N, S-doped carbon dots (N, S-CDs) with orange emission were synthesized from basic fuchsin and sulfosalicylic acid by the typical hydrothermal route. Based on the inner filter effect (IFE), the prepared N, S-CDs can be innovatively developed as an effective "signal-off" multifunctional sensing platform for sensitive determination of tetracycline antibiotics (for example, chlortetracycline (CTC)) and quercetin. The proposed sensor was utilized to realize the determination of CTC in water and milk samples and quercetin in beer sample (λex = 375 nm, λem = 605 nm) with satisfactory recoveries and relative standard deviations (RSD). The linear range and detection limit (LOD) of CTC is 1.24-165 µM and 32.36 nM, respectively. For quercetin, the linear ranges are 0.98-34 µM and 34-165 µΜ, and the LOD is 6.87 nM (3σ/m). By virtue of the good biocompatibility and long-wavelength emission, N, S-CDs were also used in the imaging of oocystis cells and yeast cells, which demonstrated promising applicability for bio-imaging and sensing. In this paper, N, S-doped carbon dots (N, S-CDs) with orange emission (λem = 605 nm) were synthesized from basic fuchsin and sulfosalicylic acid. Based on the inner filter effect (IFE), the prepared N, S-CDs can be innovatively developed as an effective "signal-off" multifunctional sensing platform for the sensing of tetracycline antibiotics (for example: chlortetracycline (CTC)) and quercetin. The sensor has been successfully applied to the determination of CTC in water and milk samples and quercetin in beer sample (λex = 375 nm, λem = 605 nm). The linear range and detection limit (LOD) of CTC is 1.24-165 µM and 32.36 nM respectively. For quercetin, the linear ranges are 0.98-34 µM and 34-165 µΜ, and the LOD is 6.87 nM (3σ/m). In addition, due to the characteristics of good biocompatibility and long-wavelength emission, the N, S-CDs were also used in the imaging of oocystis cells and yeast cells, which demonstrated promising applicability for bioimaging and sensing.


Assuntos
Antibacterianos/análise , Clortetraciclina/análise , Corantes Fluorescentes/química , Pontos Quânticos/química , Quercetina/análise , Animais , Cerveja/análise , Carbono/química , Clorófitas/química , Contaminação de Alimentos/análise , Limite de Detecção , Microscopia Confocal , Microscopia de Fluorescência , Leite/química , Nitrogênio/química , Rios/química , Espectrometria de Fluorescência , Enxofre/química , Poluentes Químicos da Água/análise , Leveduras/química
5.
J Nanosci Nanotechnol ; 20(6): 3340-3347, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31748025

RESUMO

This work describes a "turn-off-on" fluorescence probe based on carbon quantum dots for sensing Fe3+ and ascorbic acid. The carbon quantum dots are prepared by hydrothermal method using a biocarbon source of black sesame. When excited at 355 nm, the carbon quantum dots show a strong bright blue emission peak centered at 438 nm. Obviously, the decrease of the fluorescence intensity of carbon quantum dots can be seen upon addition of Fe3+. Interestingly, the fluorescence quenching can be regained after the addition of ascorbic acid. The mechanism is that the added Fe3+ was destroyed by reductive ascorbic acid because of the redox reaction between ascorbic acid and Fe3+, making the fluorescence of the system recovered. The obtained curves are linear for Fe3+ and ascorbic acid over the range 50-1500 µM and 32.2-987.6 µM, respectively. The detection limits for Fe3+ and ascorbic acid are 2.78 µM and 0.0344 µM, respectively. Thus the carbon quantum dots can be used as a dual-function fluorescent sensor to achieve sensitive detection of Fe3+ and ascorbic acid.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...