Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(9): e202218738, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36583473

RESUMO

In situ detection of highly-oxidized metal intermediates is the key to identifying the active center of an oxygen evolution reaction (OER) catalyst, but it remains challenging for NiFe-based catalysts in an aqueous solution under working conditions. Here, by utilizing the dynamic stability of the FeVI O4 2- intermediates in a self-healing water oxidation cycle of NiFe-based catalyst, the highly-oxidized FeVI intermediates leached into the electrolyte are directly detected by simple spectroelectrochemistry. Our results provide direct evidence that Fe is the active center in NiFe-based OER catalysts. Furthermore, it is revealed that the incorporation of Co into NiFe-based catalyst facilitates the formation of FeVI active species, thus enhancing the OER activity of NiCoFe-based catalyst. The insights into the mechanisms for the sustainable generation of FeVI active species in these NiFe-based catalysts lay the foundation for the design of more efficient and stable OER catalysts.

2.
Nat Commun ; 13(1): 7769, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36522326

RESUMO

The trade-off between light absorption and carrier transport in semiconductor thin film photoelectrodes is a major limiting factor of their solar-to-hydrogen efficiency for photoelectrochemical water splitting. Herein, we develop a heterogeneous doping strategy that combines surface doping with bulk gradient doping to decouple light absorption and carrier transport in a thin film photoelectrode. Taking La and Mg doped Ta3N5 thin film photoanode as an example, enhanced light absorption is achieved by surface La doping through alleviating anisotropic optical absorption, while efficient carrier transport in the bulk is maintained by the gradient band structure induced by gradient Mg doping. Moreover, the homojunction formed between the La-doped layer and the gradient Mg-doped layer further promotes charge separation. As a result, the heterogeneously doped photoanode yields a half-cell solar-to-hydrogen conversion efficiency of 4.07%, which establishes Ta3N5 as a leading performer among visible-light-responsive photoanodes. The heterogeneous doping strategy could be extended to other semiconductor thin film light absorbers to break performance trade-offs by decoupling light absorption and carrier transport.

3.
ACS Appl Mater Interfaces ; 14(9): 11567-11574, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35209715

RESUMO

The combination of Cu and Ag presents a promising way to steer the CO2 reduction products through regulating the surface active sites. However, the difficulty in forming the CuAg alloy with a controllable atomic ratio impedes the in-depth understanding of the structure-activity relationship of CuAg catalysts. Herein, we use E-beam evaporation to synthesize a series of CuAg films with uniform distribution and controllable stoichiometry to reveal the real reaction mechanism on CuAg for the electrochemical CO2 reduction process. Compared with Cu, the Cu1-xAgx (x = 0.05-0.2) alloy showed an apparent suppression of HCOOH and the ratio between C2 liquid products (e.g., ethanol and acetate) and C1 liquid product (HCOOH) is also increased. Operando synchrotron radiation Fourier transform infrared spectroscopy results suggest that the introduction of Ag into the Cu phase can significantly strengthen the absorbed *CO and *OCCO intermediates and suppress the O-C-O intermediates. This research provides a reliable way to inhibit the generation of HCOOH and enhance the production of liquid C2 products during CO2RR and presents a guideline for the future manipulation of copper catalysts by alloying.

4.
Nat Commun ; 13(1): 729, 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35132086

RESUMO

Interface engineering is a proven strategy to improve the efficiency of thin film semiconductor based solar energy conversion devices. Ta3N5 thin film photoanode is a promising candidate for photoelectrochemical (PEC) water splitting. Yet, a concerted effort to engineer both the bottom and top interfaces of Ta3N5 thin film photoanode is still lacking. Here, we employ n-type In:GaN and p-type Mg:GaN to modify the bottom and top interfaces of Ta3N5 thin film photoanode, respectively. The obtained In:GaN/Ta3N5/Mg:GaN heterojunction photoanode shows enhanced bulk carrier separation capability and better injection efficiency at photoanode/electrolyte interface, which lead to a record-high applied bias photon-to-current efficiency of 3.46% for Ta3N5-based photoanode. Furthermore, the roles of the In:GaN and Mg:GaN layers are distinguished through mechanistic studies. While the In:GaN layer contributes mainly to the enhanced bulk charge separation efficiency, the Mg:GaN layer improves the surface charge inject efficiency. This work demonstrates the crucial role of proper interface engineering for thin film-based photoanode in achieving efficient PEC water splitting.

5.
Nat Commun ; 12(1): 5980, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34645825

RESUMO

While self-healing is considered a promising strategy to achieve long-term stability for oxygen evolution reaction (OER) catalysts, this strategy remains a challenge for OER catalysts working in highly alkaline conditions. The self-healing of the OER-active nickel iron layered double hydroxides (NiFe-LDH) has not been successful due to irreversible leaching of Fe catalytic centers. Here, we investigate the introduction of cobalt (Co) into the NiFe-LDH as a promoter for in situ Fe redeposition. An active borate-intercalated NiCoFe-LDH catalyst is synthesized using electrodeposition and shows no degradation after OER tests at 10 mA cm-2 at pH 14 for 1000 h, demonstrating its self-healing ability under harsh OER conditions. Importantly, the presence of both ferrous ions and borate ions in the electrolyte is found to be crucial to the catalyst's self-healing. Furthermore, the implementation of this catalyst in photoelectrochemical devices is demonstrated with an integrated silicon photoanode. The self-healing mechanism leads to a self-limiting catalyst thickness, which is ideal for integration with photoelectrodes since redeposition is not accompanied by increased parasitic light absorption.

6.
ACS Appl Mater Interfaces ; 11(50): 46894-46901, 2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31773949

RESUMO

Inverted planar heterojunction perovskite solar cells based on all-inorganic selective contact layers show great promise for commercialization owing to their competitiveness in terms of cost and stability. However, the power conversion efficiencies (PCEs) of the few reported perovskite solar cells with this type of device structure have been limited by relatively low photovoltages. Here, we propose a new device structure comprising electron beam-evaporated nickel and niobium oxides as the hole and electron selective contact layers, respectively. We demonstrate that a metal oxide material can be directly deposited on a perovskite film by electron beam evaporation without damaging the interface. We propose that the turn-on voltage of the p-n junction formed by the selective contacts represents a quantitative proxy of the charge blocking performance. A high turn-on voltage of 1.36 V is obtained for the NiOx/Nb2O5 p-n junction. An open-circuit voltage of 1.16 V is achieved using a hybrid organic-inorganic perovskite with a band gap of 1.6 eV. The large photovoltage, enabled by the excellent charge extraction and blocking properties of the inorganic selective contact layers, leads to the highest PCE of over 19.0% for this class of device.

7.
J Phys Chem Lett ; 10(20): 6382-6388, 2019 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-31593470

RESUMO

Organic-free perovskite solar cells (PSCs) have been considered as the most promising candidate for achieving long-term stability. Here, we demonstrate an organic-free PSC consisting of inorganic CsPbI2Br perovskite, nickel oxide hole transport layer, and niobium oxide electron transport layer. A maximum power conversion efficiency (PCE) of 11.20% is achieved with an active area of 5 cm2, and it increases to 14.11% with smaller area. More importantly, the organic-free PSCs show excellent thermal stability with PCE remaining above 98% of its initial value when heated at 100 °C for 150 min. Postannealing at a proper temperature further increases its maximum PCE to 14.45%, which is the highest among any reported all-inorganic PSCs with a p-i-n structure. The enhanced performance of the postannealed device is ascribed to the decreased trap-state density and improved interface charge-transfer properties. These results demonstrated that this novel organic-free device architecture can be employed to fabricate efficient and stable PSCs for large-scale manufacturing.

8.
Chem Soc Rev ; 47(13): 4981-5037, 2018 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-29736528

RESUMO

Graphene and two-dimensional (2D) transition metal dichalcogenides (TMDs) have attracted significant interest due to their unique properties that cannot be obtained in their bulk counterparts. These atomically thin 2D materials have demonstrated strong light-matter interactions, tunable optical bandgap structures and unique structural and electrical properties, rendering possible the high conversion efficiency of solar energy with a minimal amount of active absorber material. The isolated 2D monolayer can be stacked into arbitrary van der Waals (vdWs) heterostructures without the need to consider lattice matching. Several combinations of 2D/3D and 2D/2D materials have been assembled to create vdWs heterojunctions for photovoltaic (PV) and photoelectrochemical (PEC) energy conversion. However, the complex, less-constrained, and more environmentally vulnerable interface in a vdWs heterojunction is different from that of a conventional, epitaxially grown heterojunction, engendering new challenges for surface and interface engineering. In this review, the physics of band alignment, the chemistry of surface modification and the behavior of photoexcited charge transfer at the interface during PV and PEC processes will be discussed. We will present a survey of the recent progress and challenges of 2D/3D and 2D/2D vdWs heterojunctions, with emphasis on their applicability to PV and PEC devices. Finally, we will discuss emerging issues yet to be explored for 2D materials to achieve high solar energy conversion efficiency and possible strategies to improve their performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...