Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 37(12): 3662-3671, 2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33739116

RESUMO

By utilizing scanning tunneling microscopy (STM), the self-assembled nanostructures of three characteristic aldehydes have been examined at the solution-solid interface. By introducing the active reactant 5-aminoisophthalic acid (5-AIPA), we succeeded in changing the self-assembled molecular structures through the condensation reaction and obtained the information on structural transformation in real time. The corresponding carboxyl conjugated derivatives were formed in situ and developed into the closely packed and ordered molecular architectures via hydrogen bonds at the solution-solid surface. The relevant simulations have been utilized to interpret the mechanisms of forming the nanostructures. The corresponding theoretical calculation is used to explain the reaction mechanism. Compared with the traditional ways, the on-surface condensation reaction in situ could not only provide a more convenient method for regulating the self-assembled architectures but also offer a promising strategy for building functional nanostructures and devices.

2.
ACS Nano ; 14(8): 9605-9612, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32692150

RESUMO

Skin sensors are of paramount importance for flexible wearable electronics, which are active in medical diagnosis and healthcare monitoring. Ultrahigh sensitivity, large measuring range, and high skin conformability are highly desirable for skin sensors. Here, an ultrathin flexible piezoresistive sensor with high sensitivity and wide detection range is reported based on hierarchical nanonetwork structured pressure-sensitive material and nanonetwork electrodes. The hierarchical nanonetwork material is composed of silver nanowires (Ag NWs), graphene (GR), and polyamide nanofibers (PANFs). Among them, Ag NWs are evenly interspersed in a PANFs network, forming conductive pathways. Also, GR acts as bridges of crossed Ag NWs. The hierarchical nanonetwork structure and GR bridges of the pressure-sensitive material enable the ultrahigh sensitivity for the pressure sensor. More specifically, the sensitivity of 134 kPa-1 (0-1.5 kPa) and the low detection of 3.7 Pa are achieved for the pressure sensor. Besides, the nanofibers act as a backbone, which provides effective protection for Ag NWs and GR as pressure is applied. Hence, the pressure sensor possesses an excellent durability (>8000 cycles) and wide detection range (>75 kPa). Additionally, ultrathin property (7 µm) and nanonetwork structure provide high skin conformability for the pressure sensor. These superior performances lay a foundation for the application of pressure sensors in physiological signal monitoring and pressure spatial distribution detection.


Assuntos
Grafite , Nanofibras , Nanofios , Dispositivos Eletrônicos Vestíveis , Pressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...