Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(9): 12005-12016, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36827513

RESUMO

Ever-evolving advancements in films have fueled many of the developments in the field of electrochemical sensors. For biosensor application platforms, the fabrication of metal-organic framework (MOF) films on microscopically structured substrates is of tremendous importance. However, fabrication of MOF film-based electrodes always exhibits unsatisfactory performance, and the mechanisms of the fabrication and sensing application of the corresponding composites also need to be explored. Here, we report the fabrication of conformal MIL-53 (Fe) films on carbonized natural seaweed with the assistance of an oxide nanomembrane and a potential-dependent electrochemical dopamine (DA) sensor. The geometry and structure of the composite can be conveniently tuned by the experimental parameters, while the sensing performance is significantly influenced by the applied potential. The obtained sensor demonstrates ultrahigh sensitivity, a wide linear range, a low limit of detection, and a good distinction between DA and ascorbic acid at an optimized potential of 0.3 V. The underneath mechanism is investigated in detail with the help of theoretical calculations. This work bridges the natural material and MOF films and is promising for future biosensing applications.


Assuntos
Técnicas Biossensoriais , Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Carbono/química , Dopamina/química , Óxidos , Eletrodos , Técnicas Eletroquímicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...