Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(9)2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37176174

RESUMO

High chromium cast iron (HCCI) has been widely used as wear-resistant material in the industry. Alloying is an effective way to improve the microstructure and mechanical properties of HCCI. This paper added multi-component V-Fe-Ti-Nb-C-Zr-B alloy (VFC) to HCCI, showing a significant synergistic solution-strengthening effect. The results show that the added V-Ti-Nb-B are dissolved in M7C3 carbide to form the (Cr, Fe, V, Ti, Nb)7(C, B)3 alloy carbide, and a small amount of V and all Zr are dissolved in austenite and martensite. Adding VFC into HCCI improved the hardenability of HCCI, decreased the residual austenite content from 6.0 wt% to 0.9 wt%, increased the martensite content from 70.7 wt% to 82.5 wt%, and changed the structure and content of M7C3 carbide. These changes increased the hardness of as-cast and heat-tread HCCI by 1.4% and 4.1%, increased the hardness of austenite and martensite by 7.9% and 7.0%, increased the impact toughness by 16.9%, and decreased the friction coefficient and wear loss by 2.3 % and 7.0 %, respectively. Thus, the hardness, toughness, wear resistance, and friction resistance of HCCI alloy are improved simultaneously.

2.
Materials (Basel) ; 16(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36903133

RESUMO

The pouring time interval is the decisive factor of dual-liquid casting for bimetallic productions. Traditionally, the pouring time interval is fully determined by the operator's experience and on-site observation. Thus, the quality of bimetallic castings is unstable. In this work, the pouring time interval of dual-liquid casting for producing low alloy steel/high chromium cast iron (LAS/HCCI) bimetallic hammerheads is optimized via theoretical simulation and experimental verification. The relevancies of interfacial width and bonding strength to pouring time interval are, respectively, established. The results of bonding stress and interfacial microstructure indicate that 40 s is the optimum pouring time interval. The effects of interfacial protective agent on interfacial strength-toughness are also investigated. The addition of the interfacial protective agent yields an increase of 41.5% in interfacial bonding strength and 15.6% in toughness. The optimum dual-liquid casting process is used to produce LAS/HCCI bimetallic hammerheads. Samples cut from these hammerheads show excellent strength-toughness (1188 Mpa for bonding strength and 17 J/cm2 for toughness). The findings could be a reference for dual-liquid casting technology. They are also helpful for understanding the formation theory of the bimetal interface.

3.
Theor Appl Genet ; 135(12): 4507-4522, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36422673

RESUMO

KEY MESSAGE: The genetic basis of soybean root system architecture (RSA) and the genetic relationship between shoot and RSA were revealed by integrating data from recombinant inbred population grafting and QTL mapping. Variations in root system architecture (RSA) affect the functions of roots and thus play vital roles in plant adaptations and agricultural productivity. The aim of this study was to unravel the genetic relationship between RSA traits and shoot-related traits in soybean. This study characterized RSA variability at seedling stage in a recombinant inbred population, derived from a cross between cultivated soybean C08 and wild soybean W05, and performed high-resolution quantitative trait locus (QTL) mapping. In total, 34 and 41 QTLs were detected for RSA-related and shoot-related traits, respectively, constituting eight QTL clusters. Significant QTL correspondence was found between shoot biomass and RSA-related traits, consistent with significant correlations between these phenotypes. RSA-related QTLs also overlapped with selection regions in the genome, suggesting the cultivar RSA could be a partial consequence of domestication. Using reciprocal grafting, we confirmed that shoot-derived signals affected root development and the effects were controlled by multiple loci. Meanwhile, RSA-related QTLs were found to co-localize with four soybean flowering-time loci. Consistent with the phenotypes of the parental lines of our RI population, diminishing the function of flowering controlling E1 family through RNA interference (RNAi) led to reduced root growth. This implies that the flowering time-related genes within the RSA-related QTLs are actually contributing to RSA. To conclude, this study identified the QTLs that determine RSA through controlling root growth indirectly via regulating shoot functions, and discovered superior alleles from wild soybean that could be used to improve the root structure in existing soybean cultivars.


Assuntos
Glycine max , Locos de Características Quantitativas , Glycine max/genética , Raízes de Plantas/genética , Mapeamento Cromossômico , Fenótipo
5.
Bioinformatics ; 38(18): 4406-4408, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35866686

RESUMO

MOTIVATION: Synteny analysis is a widely used framework in comparative genomics studies, which provides valuable information to reveal chromosome collinearity in both intra-species and inter-species. Most analysis pipelines, however, are command line-based, making it challenging for biologists to run the algorithms and visualize the results. Existing visualization tools either provide static plots or can only be run on web-based servers and lack efficient visualization methods for associating macro-synteny blocks with individual gene pairs in a micro-synteny region. RESULTS: We developed ShinySyn, a Shiny/R application built on the MCscan framework that provides an easy-to-use graphic interface for synteny analyses without requiring any programming skills, to reduce technical barriers. ShinySyn not only provides interactive visualization for macro-synteny, micro-synteny and genome-level dot views, but it also creates an intuitive representation with a dynamic zooming feature from macro-synteny to individual homologous genes. AVAILABILITY AND IMPLEMENTATION: The source code and installation instructions for ShinySyn can be accessed via https://github.com/obenno/ShinySyn. A pre-built docker image is also available at https://hub.docker.com/r/obenno/shinysyn. The application can be used locally or seamlessly integrated into any Shiny application server.


Assuntos
Genoma , Software , Sintenia , Genômica/métodos , Algoritmos
6.
Genomics ; 114(3): 110364, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35421559

RESUMO

Accessible chromatin regions (ACRs) are tightly associated with gene expressions in the genome. Conserved non-coding cis-regulatory elements, such as transcription factor binding motifs, are usually found in ACRs, indicating an essential regulatory role of ACRs in the plant genome architecture. However, there have been few studies on soybean ACRs, especially those focusing on specific tissues. Hence, in this study, with the convenient ATAC-seq, we identified the ACRs in six soybean tissues, including root, leaf bud, flower, flower bud, developing seed, and pod. In total, the ACRs occupied about 3.3% of the entire soybean genome. By integrating the results from RNA-seq and transcription factor (TF) ChIP-seq, ACRs were found to be tightly associated with gene expressions and TF binding capacities in soybean. Together, these data provide a comprehensive understanding of the genomic features of ACRs in soybean. As a collection of essential genomic resources, these processed data are made available at datahub.wildsoydb.org.


Assuntos
Cromatina , Glycine max , Cromatina/genética , Glycine max/genética , Glycine max/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Sequenciamento de Cromatina por Imunoprecipitação , Genômica
7.
BMC Genomics ; 23(1): 65, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35057741

RESUMO

BACKGROUND: Soybean is a major legume crop with high nutritional and environmental values suitable for sustainable agriculture. Noncoding RNAs (ncRNAs), including microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), are important regulators of gene functions in eukaryotes. However, the interactions between these two types of ncRNAs in the context of plant physiology, especially in response to salinity stress, are poorly understood. RESULTS: Here, we challenged a cultivated soybean accession (C08) and a wild one (W05) with salt treatment and obtained their small RNA transcriptomes at six time points from both root and leaf tissues. In addition to thoroughly analyzing the differentially expressed miRNAs, we also documented the first case of miRNA arm-switching (miR166m), the swapping of dominant miRNA arm expression, in soybean in different tissues. Two arms of miR166m target different genes related to salinity stress (chloroplastic beta-amylase 1 targeted by miR166m-5p and calcium-dependent protein kinase 1 targeted by miR166m-3p), suggesting arm-switching of miR166m play roles in soybean in response to salinity stress. Furthermore, two pairs of miRNA:lncRNA interacting partners (miR166i-5p and lncRNA Gmax_MSTRG.35921.1; and miR394a-3p and lncRNA Gmax_MSTRG.18616.1) were also discovered in reaction to salinity stress. CONCLUSIONS: This study demonstrates how ncRNA involves in salinity stress responses in soybean by miRNA arm switching and miRNA:lncRNA interactions. The behaviors of ncRNAs revealed in this study will shed new light on molecular regulatory mechanisms of stress responses in plants, and hence provide potential new strategies for crop improvement.


Assuntos
Glycine max , MicroRNAs , RNA Longo não Codificante , MicroRNAs/genética , RNA Longo não Codificante/genética , RNA de Plantas/genética , Estresse Salino , Glycine max/genética , Transcriptoma
8.
Front Plant Sci ; 12: 644408, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815451

RESUMO

Salinity is a major environmental factor that constrains soybean yield and grain quality. Given our past observations using the salt-sensitive soybean (Glycine max [L.] Merr.) accession C08 on its early responses to salinity and salt-induced transcriptomic modifications, the aim of this study was to assess the lipid profile changes in this cultivar before and after short-term salt stress, and to explore the adaptive mechanisms underpinning lipid homeostasis. To this end, lipid profiling and proteomic analyses were performed on the leaves of soybean seedlings subjected to salt treatment for 0, 0.5, 1, and 2 h. Our results revealed that short-term salt stress caused dynamic lipid alterations resulting in recycling for both galactolipids and phospholipids. A comprehensive understanding of membrane lipid adaption following salt treatment was achieved by combining time-dependent lipidomic and proteomic data. Proteins involved in phosphoinositide synthesis and turnover were upregulated at the onset of salt treatment. Salinity-induced lipid recycling was shown to enhance jasmonic acid and phosphatidylinositol biosyntheses. Our study demonstrated that salt stress resulted in a remodeling of membrane lipid composition and an alteration in membrane lipids associated with lipid signaling and metabolism in C08 leaves.

9.
Genomics ; 113(1 Pt 1): 344-355, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33338631

RESUMO

ChIP-seq is widely used for mapping the transcription factor (TF) binding sites throughout the genome in vivo. In this study, we adopted and modified ChIPmentation, a fast, robust, low-input requirement ChIP-seq method, to a transient expression system using soybean protoplasts to expedite the exploration of TF binding sites. To test this new protocol, we expressed a tagged version of a C2H2-type zinc finger TF, JAGGED1 (GmJAG1), in soybean protoplasts and successfully identified its binding sites in the soybean genome. Furthermore, valuable genomic features such as a novel GmJAG1-binding motif, and the epigenetic characteristics as well as an enhancer-like function of GmJBSs were also found via coupling ATAC-seq and H3K27me3 ChIP-seq data. The application of the modified ChIPmentation protocol in this study using soybean protoplasts provided a new approach for rapid elucidation of how a TF binds to the various target genes in the soybean genome, as illustrated here using GmJAG1.


Assuntos
Glycine max/genética , Proteína Jagged-1/metabolismo , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Montagem e Desmontagem da Cromatina , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Proteína Jagged-1/genética , Motivos de Nucleotídeos , Proteínas de Plantas/genética , Ligação Proteica , Protoplastos/metabolismo
10.
R Soc Open Sci ; 7(7): 191653, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32874599

RESUMO

Density functional theory was employed to investigate the (111), (200), (210), (211) and (220) surfaces of CoS2. The surface energies were calculated with a sulfur environment using first-principle-based thermodynamics. It is founded that surfaces with metal atoms at their outermost layer have higher energy. The stoichiometric (220) surface terminated by two layer of sulfur atoms is most stable under the sulfur-rich condition, while the non-stoichiometric (211) surface terminated by a layer of Co atoms has the lower energy under the sulfur-poor environment. The electric structure results show that the front valence electrons of (200) surface are active, indicating that there may be some active sites on this face. There is an energy gap between the stoichiometric (220) and (211), which has low Fermi energy, indicating that their electronic structures are dynamically stable. Spin-polarized bands are calculated on the stoichiometric surfaces, and these two (200) and (210) surfaces are predicted to be noticeably spin-polarized. The Bravais-Friedel-Donnay-Harker (BFDH) method is adopted to predict crystal growth habit. The results show that the most important crystal planes for the CoS2 crystal growth are (111) and (200) planes, and the macroscopic morphology of CoS2 crystal may be spherical, cubic, octahedral, prismatic or plate-shaped, which have been verified by experiments.

11.
Nutrients ; 12(6)2020 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-32521660

RESUMO

Flavonoids are a class of polyphenolic compounds that naturally occur in plants. Sub-groups of flavonoids include flavone, flavonol, flavanone, flavanonol, anthocyanidin, flavanol and isoflavone. The various modifications on flavonoid molecules further increase the diversity of flavonoids. Certain crops are famous for being enriched in specific flavonoids. For example, anthocyanins, which give rise to a purplish color, are the characteristic compounds in berries; flavanols are enriched in teas; and isoflavones are uniquely found in several legumes. It is widely accepted that the antioxidative properties of flavonoids are beneficial for human health. In this review, we summarize the classification of the different sub-groups of flavonoids based on their molecular structures. The health benefits of flavonoids are addressed from the perspective of their molecular structures. The flavonoid biosynthesis pathways are compared among different crops to highlight the mechanisms that lead to the differential accumulation of different sub-groups of flavonoids. In addition, the mechanisms and genes involved in the transport and accumulation of flavonoids in crops are discussed. We hope the understanding of flavonoid accumulation in crops will guide the proper balance in their consumption to improve human health.


Assuntos
Produtos Agrícolas/metabolismo , Flavonoides/química , Flavonoides/classificação , Transportadores de Cassetes de Ligação de ATP/metabolismo , Antocianinas , Antioxidantes , Feminino , Flavonoides/biossíntese , Flavonoides/metabolismo , Humanos , Isoflavonas , Masculino , Estrutura Molecular , Polifenóis
12.
J Exp Bot ; 71(10): 2970-2981, 2020 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-32061092

RESUMO

Transcription factors (TFs) help plants respond to environmental stresses by regulating gene expression. Up till now, studies on the MYB family of TFs have mainly focused on the highly abundant R2R3-subtype. While the less well-known 1R-subtype has been generally shown to enhance abscisic acid (ABA) sensitivity by acting as transcriptional activators, the mechanisms of their functions are unclear. Here we identified an ABA sensitivity-associated gene from soybean, ABA-Sensitive 1 (GmABAS1), of the 1R-subtype of MYB. Using the GFP-GmABAS1 fusion protein, we demonstrated that GmABAS1 is localized in the nucleus, and with yeast reporter systems, we showed that it is a transcriptional repressor. We then identified the target gene of GmABAS1 to be Glyma.01G060300, an annotated ABI five-binding protein 3 and showed that GmABAS1 binds to the promoter of Glyma.01G060300 both in vitro and in vivo. Furthermore, Glyma.01G060300 and GmABAS1 exhibited reciprocal expression patterns under osmotic stress, inferring that GmABAS1 is a transcriptional repressor of Glyma.01G060300. As a further confirmation, AtAFP2, an orthologue of Glyma.01G060300, was down-regulated in GmABAS1-transgenic Arabidopsis thaliana, enhancing the plant's sensitivity to ABA. This is the first time a 1R-subtype of MYB from soybean has been reported to enhance ABA sensitivity by acting as a transcriptional repressor.


Assuntos
Ácido Abscísico , Glycine max , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Glycine max/genética , Glycine max/metabolismo , Estresse Fisiológico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
13.
Methods Mol Biol ; 1933: 245-255, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30945189

RESUMO

Long noncoding RNAs (lncRNAs) have been shown to play important roles in various organisms, including plant species. Several tools and pipelines have emerged for lncRNA identification, including reference-based transcriptome assembly pipelines and various coding potential calculating tools. In this protocol, we have integrated some of the most updated computational tools and described the procedures step-by-step for identifying lncRNAs from plant strand-specific RNA-sequencing datasets. We will start from clean RNA-sequencing reads, followed by reference-based transcriptome assembly, filtering of known genes, and lncRNA prediction. At the end point, users will obtain a set of predicted lncRNAs for downstream use.


Assuntos
Arabidopsis/genética , Biologia Computacional/normas , Genoma de Planta , Sequenciamento de Nucleotídeos em Larga Escala/métodos , RNA Longo não Codificante/genética , RNA de Plantas/genética , Análise de Sequência de RNA/normas , Biologia Computacional/métodos , Regulação da Expressão Gênica de Plantas , Padrões de Referência , Análise de Sequência de RNA/métodos , Transcriptoma
14.
Nat Commun ; 10(1): 1216, 2019 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-30872580

RESUMO

Efficient crop improvement depends on the application of accurate genetic information contained in diverse germplasm resources. Here we report a reference-grade genome of wild soybean accession W05, with a final assembled genome size of 1013.2 Mb and a contig N50 of 3.3 Mb. The analytical power of the W05 genome is demonstrated by several examples. First, we identify an inversion at the locus determining seed coat color during domestication. Second, a translocation event between chromosomes 11 and 13 of some genotypes is shown to interfere with the assignment of QTLs. Third, we find a region containing copy number variations of the Kunitz trypsin inhibitor (KTI) genes. Such findings illustrate the power of this assembly in the analysis of large structural variations in soybean germplasm collections. The wild soybean genome assembly has wide applications in comparative genomic and evolutionary studies, as well as in crop breeding and improvement programs.


Assuntos
Genoma de Planta/genética , Glycine max/genética , Melhoramento Vegetal/métodos , Locos de Características Quantitativas/genética , Evolução Biológica , Variações do Número de Cópias de DNA , Domesticação , Genômica/métodos , Genótipo , Anotação de Sequência Molecular , Peptídeos/genética , Proteínas de Plantas/genética , Translocação Genética/genética
15.
Plant Cell Environ ; 42(1): 98-114, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29508916

RESUMO

To obtain a comprehensive understanding of transcriptomic reprogramming under salt stress, we performed whole-transcriptome sequencing on the leaf and root of soybean seedlings subjected to salt treatment in a time-course experiment (0, 1, 2, 4, 24, and 48 hr). This time series dataset enabled us to identify important hubs and connections of gene expressions. We highlighted the analysis on phytohormone signaling pathways and their possible crosstalks. Differential expressions were also found among those genes involved in carbon and nitrogen metabolism. In general, the salt-treated seedlings slowed down their photosynthetic functions and ramped up sugar catabolism to provide extra energy for survival. Primary nitrogen assimilation was shut down whereas nitrogen resources were redistributed. Overall, the results from the transcriptomic analyses indicate that the plant uses a multipronged approach to overcome salt stress, with both fast-acting, immediate physiological responses, and longer term reactions that may involve metabolic adjustment.


Assuntos
Regulação da Expressão Gênica de Plantas , Glycine max/metabolismo , Estresse Salino , Plântula/metabolismo , Perfilação da Expressão Gênica , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia , Estresse Salino/fisiologia , Plântula/fisiologia , Glycine max/fisiologia
16.
Int J Mol Sci ; 18(4)2017 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-28417911

RESUMO

The F-box family is one of the largest gene families in plants that regulate diverse life processes, including salt responses. However, the knowledge of the soybean F-box genes and their roles in salt tolerance remains limited. Here, we conducted a genome-wide survey of the soybean F-box family, and their expression analysis in response to salinity via in silico analysis of online RNA-sequencing (RNA-seq) data and quantitative reverse-transcription polymerase chain reaction (qRT-PCR) to predict their potential functions. A total of 725 potential F-box proteins encoded by 509 genes were identified and classified into 9 subfamilies. The gene structures, conserved domains and chromosomal distributions were characterized. There are 76 pairs of duplicate genes identified, including genome-wide segmental and tandem duplication events, which lead to the expansion of the number of F-box genes. The in silico expression analysis showed that these genes would be involved in diverse developmental functions and play an important role in salt response. Our qRT-PCR analysis confirmed 12 salt-responding F-box genes. Overall, our results provide useful information on soybean F-box genes, especially their potential roles in salt tolerance.


Assuntos
Proteínas F-Box/genética , Estudo de Associação Genômica Ampla , Glycine max/genética , Família Multigênica , Proteínas de Plantas/genética , Tolerância ao Sal/genética , Estresse Fisiológico/genética , Motivos de Aminoácidos , Análise por Conglomerados , Sequência Conservada , Proteínas F-Box/química , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/química , Domínios e Motivos de Interação entre Proteínas , Glycine max/metabolismo
17.
Nat Commun ; 5: 4340, 2014 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-25004933

RESUMO

Using a whole-genome-sequencing approach to explore germplasm resources can serve as an important strategy for crop improvement, especially in investigating wild accessions that may contain useful genetic resources that have been lost during the domestication process. Here we sequence and assemble a draft genome of wild soybean and construct a recombinant inbred population for genotyping-by-sequencing and phenotypic analyses to identify multiple QTLs relevant to traits of interest in agriculture. We use a combination of de novo sequencing data from this work and our previous germplasm re-sequencing data to identify a novel ion transporter gene, GmCHX1, and relate its sequence alterations to salt tolerance. Rapid gain-of-function tests show the protective effects of GmCHX1 towards salt stress. This combination of whole-genome de novo sequencing, high-density-marker QTL mapping by re-sequencing and functional analyses can serve as an effective strategy to unveil novel genomic information in wild soybean to facilitate crop improvement.


Assuntos
Genoma de Planta , Glycine max/genética , Bombas de Íon/genética , Proteínas de Plantas/genética , Tolerância ao Sal , Mapeamento Cromossômico , Genótipo , Bombas de Íon/metabolismo , Dados de Sequência Molecular , Locos de Características Quantitativas , Cloreto de Sódio/metabolismo , Glycine max/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...