Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Res Int ; 187: 114368, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763647

RESUMO

This study aimed to extract bamboo shoot protein (BSP) using different extraction approaches and compare their functional and physicochemical properties with commercial protein ingredients, including whey protein and soy protein isolates. The extraction methods including alkali extraction (AE), salt extraction (SE), and phosphate-aided ethanol precipitation (PE) were used. An enhanced solvent extraction method was utilized in combination, resulting in a significant improvement in the protein purity, which reached 81.59 %, 87.36 %, and 67.08 % respectively. The extraction methods had significant effects on the amino acid composition, molecular weight distribution, and functional properties of the proteins. SE exhibited the best solubility and emulsification properties. Its solubility reached up to 93.38 % under alkaline conditions, and the emulsion stabilized by SE with enhanced solvent extraction retained 60.95 % stability after 120 min, which could be attributed to its higher protein content, higher surface hydrophobicity, and relative more stable and organized protein structure. All three BSP samples demonstrated better oil holding capacity, while the SE sample showed comparable functional properties to soy protein such as foaming and emulsifying properties. These findings indicate the potential of BSP as an alternative plant protein ingredient in the food industry.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Proteínas de Plantas , Brotos de Planta , Solubilidade , Proteínas de Plantas/química , Proteínas de Plantas/isolamento & purificação , Brotos de Planta/química , Emulsões/química , Aminoácidos/química , Aminoácidos/análise , Peso Molecular , Proteínas do Soro do Leite/química , Proteínas de Soja/química , Solventes/química
2.
Foods ; 11(19)2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36230173

RESUMO

Stabilizing emulsion using complex biopolymers is a common strategy. It would be very interesting to characterize the impact of charge density on the emulsifying properties of complex polyelectrolytes carrying opposite charges. In this study, cationic modified microcrystalline celluloses (CMCC) of different charge densities were prepared and mixed with soy protein isolate (SPI) for emulsion applications. CMCC-1 to 3 with various cationic charge values were successfully prepared as characterized by zeta-potential and FTIR. The positive charge density's effects on solubility, thermogravimetric properties, and rheological properties were studied. Complexes of SPI-CMCC with various zeta-potential values were then obtained and used to stabilize soybean oil emulsions. The results show that emulsions stabilized by complexes of SPI and CMCC-3 at a ratio of 1:3 had the best emulsification ability and stability. However, the interfacial tension-reducing ability of complexes decreased continuously with increasing cationic charge value, while the rheological results show that complexes of SPI-CMCC-3 at a ratio of 1:3 formed a stronger viscoelastic network than other complexes. Our results indicate that this SPI-CMCC complex formula showed excellent emulsification performance, which could be adjusted and promoted by changing the charge density. This complex formula is promising for fabrication of emulsion-based food and cosmetic products.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...