Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Pattern Anal Mach Intell ; 39(11): 2314-2320, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28114002

RESUMO

Recently, significant improvement has been made on semantic object segmentation due to the development of deep convolutional neural networks (DCNNs). Training such a DCNN usually relies on a large number of images with pixel-level segmentation masks, and annotating these images is very costly in terms of both finance and human effort. In this paper, we propose a simple to complex (STC) framework in which only image-level annotations are utilized to learn DCNNs for semantic segmentation. Specifically, we first train an initial segmentation network called Initial-DCNN with the saliency maps of simple images (i.e., those with a single category of major object(s) and clean background). These saliency maps can be automatically obtained by existing bottom-up salient object detection techniques, where no supervision information is needed. Then, a better network called Enhanced-DCNN is learned with supervision from the predicted segmentation masks of simple images based on the Initial-DCNN as well as the image-level annotations. Finally, more pixel-level segmentation masks of complex images (two or more categories of objects with cluttered background), which are inferred by using Enhanced-DCNN and image-level annotations, are utilized as the supervision information to learn the Powerful-DCNN for semantic segmentation. Our method utilizes 40K simple images from Flickr.com and 10K complex images from PASCAL VOC for step-wisely boosting the segmentation network. Extensive experimental results on PASCAL VOC 2012 segmentation benchmark well demonstrate the superiority of the proposed STC framework compared with other state-of-the-arts.

2.
IEEE Trans Pattern Anal Mach Intell ; 39(1): 115-127, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26955019

RESUMO

In this work, we address the human parsing task with a novel Contextualized Convolutional Neural Network (Co-CNN) architecture, which well integrates the cross-layer context, global image-level context, semantic edge context, within-super-pixel context and cross-super-pixel neighborhood context into a unified network. Given an input human image, Co-CNN produces the pixelwise categorization in an end-to-end way. First, the cross-layer context is captured by our basic local-to-global-to-local structure, which hierarchically combines the global semantic information and the local fine details across different convolutional layers. Second, the global image-level label prediction is used as an auxiliary objective in the intermediate layer of the Co-CNN, and its outputs are further used for guiding the feature learning in subsequent convolutional layers to leverage the global image-level context. Third, semantic edge context is further incorporated into Co-CNN, where the high-level semantic boundaries are leveraged to guide pixel-wise labeling. Finally, to further utilize the local super-pixel contexts, the within-super-pixel smoothing and cross-super-pixel neighbourhood voting are formulated as natural sub-components of the Co-CNN to achieve the local label consistency in both training and testing process. Comprehensive evaluations on two public datasets well demonstrate the significant superiority of our Co-CNN over other state-of-the-arts for human parsing. In particular, the F-1 score on the large dataset [1] reaches 81.72 percent by Co-CNN, significantly higher than 62.81 percent and 64.38 percent by the state-of-the-art algorithms, M-CNN [2] and ATR [1], respectively. By utilizing our newly collected large dataset for training, our Co-CNN can achieve 85.36 percent in F-1 score.

3.
IEEE Trans Pattern Anal Mach Intell ; 39(7): 1462-1468, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-27514037

RESUMO

An intuition on human segmentation is that when a human is moving in a video, the video-context (e.g., appearance and motion clues) may potentially infer reasonable mask information for the whole human body. Inspired by this, based on popular deep convolutional neural networks (CNN), we explore a very-weakly supervised learning framework for human segmentation task, where only an imperfect human detector is available along with massive weakly-labeled YouTube videos. In our solution, the video-context guided human mask inference and CNN based segmentation network learning iterate to mutually enhance each other until no further improvement gains. In the first step, each video is decomposed into supervoxels by the unsupervised video segmentation. The superpixels within the supervoxels are then classified as human or non-human by graph optimization with unary energies from the imperfect human detection results and the predicted confidence maps by the CNN trained in the previous iteration. In the second step, the video-context derived human masks are used as direct labels to train CNN. Extensive experiments on the challenging PASCAL VOC 2012 semantic segmentation benchmark demonstrate that the proposed framework has already achieved superior results than all previous weakly-supervised methods with object class or bounding box annotations. In addition, by augmenting with the annotated masks from PASCAL VOC 2012, our method reaches a new state-of-the-art performance on the human segmentation task.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...