Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20229203

RESUMO

Recent genome-wide association studies (GWASs) of COVID-19 patients of European ancestry have identified genetic loci significantly associated with disease severity (1). Here, we employed the detailed clinical, immunological and multi-omics dataset of the Human Functional Genomics Projects (HFGP) to explore the physiological significance of the host genetic variants that influence susceptibility to severe COVID-19. A genomics investigation intersected with functional characterization of individuals with high genetic risk for severe COVID-19 susceptibility identified several major patterns: i. a large impact of genetically determined innate immune responses in COVID-19, with increased susceptibility for severe disease in individuals with defective monocyte-derived cytokine production; ii. genetic susceptibility related to ABO blood groups is probably mediated through the von Willebrand factor (VWF) and endothelial dysfunction. We further validated these identified associations at transcript and protein levels by using independent disease cohorts. These insights allow a physiological understanding of genetic susceptibility to severe COVID-19, and indicate pathways that could be targeted for prevention and therapy. One Sentence summaryIn this study, we explore the physiological significance of the genetic variants associated with COVID-19 severity using detailed clinical, immunological and multi-omics data from large cohorts. Our findings allow a physiological understanding of genetic susceptibility to severe COVID-19, and indicate pathways that could be targeted for prevention and therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...