Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Nat Commun ; 14(1): 7348, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37963875

RESUMO

Ubiquitination is a post-translational modification initiated by the E1 enzyme UBA1, which transfers ubiquitin to ~35 E2 ubiquitin-conjugating enzymes. While UBA1 loss is cell lethal, it remains unknown how partial reduction in UBA1 activity is endured. Here, we utilize deep-coverage mass spectrometry to define the E1-E2 interactome and to determine the proteins that are modulated by knockdown of UBA1 and of each E2 in human cells. These analyses define the UBA1/E2-sensitive proteome and the E2 specificity in protein modulation. Interestingly, profound adaptations in peroxisomes and other organelles are triggered by decreased ubiquitination. While the cargo receptor PEX5 depends on its mono-ubiquitination for binding to peroxisomal proteins and importing them into peroxisomes, we find that UBA1/E2 knockdown induces the compensatory upregulation of other PEX proteins necessary for PEX5 docking to the peroxisomal membrane. Altogether, this study defines a homeostatic mechanism that sustains peroxisomal protein import in cells with decreased ubiquitination capacity.


Assuntos
Peroxissomos , Ubiquitina , Humanos , Ubiquitinação , Ubiquitina/metabolismo , Transporte Proteico/fisiologia , Peroxissomos/metabolismo , Membranas Intracelulares/metabolismo
2.
Nat Struct Mol Biol ; 29(4): 292-305, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35332321

RESUMO

The noradrenergic locus ceruleus (LC) is the first site of detectable tau pathology in Alzheimer's disease (AD), but the mechanisms underlying the selective vulnerability of the LC in AD have not been completely identified. In the present study, we show that DOPEGAL, a monoamine oxidase A (MAO-A) metabolite of norepinephrine (NE), reacts directly with the primary amine on the Lys353 residue of tau to stimulate its aggregation and facilitate its propagation. Inhibition of MAO-A or mutation of the Lys353 residue to arginine (Lys353Arg) decreases tau Lys353-DOPEGAL levels and diminishes tau pathology spreading. Wild-type tau preformed fibrils (PFFs) trigger Lys353-DOPEGAL formation, tau pathology propagation and cognitive impairment in MAPT transgenic mice, all of which are attenuated with PFFs made from the Lys353Arg mutant. Thus, the selective vulnerability of LC neurons in AD may be explained, in part, by NE oxidation via MAO-A into DOPEGAL, which covalently modifies tau and accelerates its aggregation, toxicity and propagation.


Assuntos
Doença de Alzheimer , Norepinefrina , Acetaldeído/análogos & derivados , Doença de Alzheimer/genética , Animais , Locus Cerúleo/metabolismo , Locus Cerúleo/patologia , Camundongos , Camundongos Transgênicos , Monoaminoxidase/genética , Monoaminoxidase/metabolismo , Norepinefrina/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
3.
Nucleic Acids Res ; 50(6): 3254-3275, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35212371

RESUMO

The 48 human nuclear receptors (NRs) form a superfamily of transcription factors that regulate major physiological and pathological processes. Emerging evidence suggests that NR crosstalk can fundamentally change our understanding of NR biology, but detailed molecular mechanisms of crosstalk are lacking. Here, we report the molecular basis of crosstalk between the pregnane X receptor (PXR) and constitutive androstane receptor (CAR), where they form a novel heterodimer, resulting in their mutual inhibition. PXR and CAR regulate drug metabolism and energy metabolism. Although they have been broadly perceived as functionally redundant, a growing number of reports suggests a mutual inhibitory relation, but their precise mode of coordinated action remains unknown. Using methods including RNA sequencing, small-angle X-ray scattering and crosslinking mass spectrometry we demonstrate that the mutual inhibition altered gene expression globally and is attributed to the novel PXR-CAR heterodimerization via the same interface used by each receptor to heterodimerize with its functional partner, retinoid X receptor (RXR). These findings establish an unexpected functional relation between PXR, CAR and RXR, change the perceived functional relation between PXR and CAR, open new perspectives on elucidating their role and designing approaches to regulate them, and highlight the importance to comprehensively investigate nuclear receptor crosstalk.


Assuntos
Receptor Constitutivo de Androstano/metabolismo , Receptor de Pregnano X/metabolismo , Dimerização , Regulação da Expressão Gênica , Humanos , Receptores Citoplasmáticos e Nucleares/metabolismo
4.
Nature ; 600(7888): 308-313, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34795452

RESUMO

Nutrients are emerging regulators of adaptive immunity1. Selective nutrients interplay with immunological signals to activate mechanistic target of rapamycin complex 1 (mTORC1), a key driver of cell metabolism2-4, but how these environmental signals are integrated for immune regulation remains unclear. Here we use genome-wide CRISPR screening combined with protein-protein interaction networks to identify regulatory modules that mediate immune receptor- and nutrient-dependent signalling to mTORC1 in mouse regulatory T (Treg) cells. SEC31A is identified to promote mTORC1 activation by interacting with the GATOR2 component SEC13 to protect it from SKP1-dependent proteasomal degradation. Accordingly, loss of SEC31A impairs T cell priming and Treg suppressive function in mice. In addition, the SWI/SNF complex restricts expression of the amino acid sensor CASTOR1, thereby enhancing mTORC1 activation. Moreover, we reveal that the CCDC101-associated SAGA complex is a potent inhibitor of mTORC1, which limits the expression of glucose and amino acid transporters and maintains T cell quiescence in vivo. Specific deletion of Ccdc101 in mouse Treg cells results in uncontrolled inflammation but improved antitumour immunity. Collectively, our results establish epigenetic and post-translational mechanisms that underpin how nutrient transporters, sensors and transducers interplay with immune signals for three-tiered regulation of mTORC1 activity and identify their pivotal roles in licensing T cell immunity and immune tolerance.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Nutrientes , Mapas de Interação de Proteínas , Linfócitos T Reguladores , Animais , Feminino , Masculino , Camundongos , Proteínas de Transporte/metabolismo , Sistemas CRISPR-Cas/genética , Fatores de Transcrição Forkhead/metabolismo , Genoma/genética , Homeostase , Tolerância Imunológica , Inflamação/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Neoplasias/imunologia , Proteínas Nucleares/metabolismo , Nutrientes/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Proteínas Quinases Associadas a Fase S/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Transativadores/metabolismo
5.
Cell ; 184(13): 3519-3527.e10, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34107286

RESUMO

Mutations in leucine-rich repeat kinase 2 (LRRK2) are commonly implicated in the pathogenesis of both familial and sporadic Parkinson's disease (PD). LRRK2 regulates critical cellular processes at membranous organelles and forms microtubule-based pathogenic filaments, yet the molecular basis underlying these biological roles of LRRK2 remains largely enigmatic. Here, we determined high-resolution structures of full-length human LRRK2, revealing its architecture and key interdomain scaffolding elements for rationalizing disease-causing mutations. The kinase domain of LRRK2 is captured in an inactive state, a conformation also adopted by the most common PD-associated mutation, LRRK2G2019S. This conformation serves as a framework for structure-guided design of conformational specific inhibitors. We further determined the structure of COR-mediated LRRK2 dimers and found that single-point mutations at the dimer interface abolished pathogenic filamentation in cells. Overall, our study provides mechanistic insights into physiological and pathological roles of LRRK2 and establishes a structural template for future therapeutic intervention in PD.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/química , Sequência de Aminoácidos , Células HEK293 , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/ultraestrutura , Modelos Moleculares , Domínios Proteicos , Multimerização Proteica , Estrutura Secundária de Proteína
6.
Methods Mol Biol ; 2285: 297-317, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33928561

RESUMO

The dynamic regulation of protein function by altered protein expression and post-translational modifications (PTMs) is essential for T cell function, but it has remained difficult to systemically quantify such events. Mass spectrometry (MS)-based proteomics has become a mainstream tool for comprehensive profiling of proteome and PTMs, especially with the development of multiplexed isobaric labeling methods, such as tandem mass tag (TMT), coupled with high-resolution two-dimensional liquid chromatography and tandem mass spectrometry (LC/LC-MS/MS). Here, we introduce a deep proteomics profiling protocol with an optimized 11-plex TMT-LC/LC-MS/MS platform to quantitate whole proteome, phosphoproteome, acetylome, and methylome in activated T cells. The major steps include preparation of activated T cells, protein extraction and digestion, TMT labeling, basic pH reverse phase LC, modified peptide enrichment, acidic pH reverse phase LC-MS/MS, and computational data processing. Approximately 10,000 proteins, 30,000 phosphosites, 2,000 lysine acetylated sites, and 1,000 lysine methylated sites can be identified and quantified from 1 mg of proteins per sample. Quality control steps are implemented in this protocol, and future development, such as nanoscale 16-plex TMT analysis, is discussed. This multiplexed and robust method provides a powerful tool for dissecting proteomic and PTM signatures in T cells at the systems level, and it is equally suitable for other biological samples, including effector T cell subsets.


Assuntos
Ativação Linfocitária , Processamento de Proteína Pós-Traducional , Proteínas/análise , Proteoma , Proteômica , Linfócitos T/metabolismo , Espectrometria de Massas em Tandem , Acetilação , Animais , Cromatografia Líquida de Alta Pressão , Cromatografia de Fase Reversa , Humanos , Separação Imunomagnética , Metilação , Fosforilação , Projetos de Pesquisa , Linfócitos T/imunologia , Fluxo de Trabalho
7.
J Proteome Res ; 20(1): 337-345, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33175545

RESUMO

Tandem mass tag (TMT)-based mass spectrometry (MS) enables deep proteomic profiling of more than 10,000 proteins in complex biological samples but requires up to 100 µg protein in starting materials during a standard analysis. Here, we present a streamlined protocol to quantify more than 9000 proteins with 0.5 µg protein per sample by 16-plex TMT coupled with two-dimensional liquid chromatography and tandem mass spectrometry (LC/LC-MS/MS). In this protocol, we optimized multiple conditions to reduce sample loss, including processing each sample in a single tube to minimize surface adsorption, increasing digestion enzymes to shorten proteolysis and function as carriers, eliminating a desalting step between digestion and TMT labeling, and developing miniaturized basic pH LC for prefractionation. By profiling 16 identical human brain tissue samples of Alzheimer's disease (AD), vascular dementia (VaD), and non-dementia controls, we directly compared this new microgram-scale protocol to the standard-scale protocol, quantifying 9116 and 10,869 proteins, respectively. Importantly, bioinformatics analysis indicated that the microgram-scale protocol had adequate sensitivity and reproducibility to detect differentially expressed proteins in disease-related pathways. Thus, this newly developed protocol is of general application for deep proteomics analysis of biological and clinical samples at sub-microgram levels.


Assuntos
Proteoma , Espectrometria de Massas em Tandem , Cromatografia Líquida , Humanos , Proteômica , Reprodutibilidade dos Testes
8.
Metabolites ; 10(5)2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-32408578

RESUMO

Metabolomics is increasingly important for biomedical research, but large-scale metabolite identification in untargeted metabolomics is still challenging. Here, we present Jumbo Mass spectrometry-based Program of Metabolomics (JUMPm) software, a streamlined software tool for identifying potential metabolite formulas and structures in mass spectrometry. During database search, the false discovery rate is evaluated by a target-decoy strategy, where the decoys are produced by breaking the octet rule of chemistry. We illustrated the utility of JUMPm by detecting metabolite formulas and structures from liquid chromatography coupled tandem mass spectrometry (LC-MS/MS) analyses of unlabeled and stable-isotope labeled yeast samples. We also benchmarked the performance of JUMPm by analyzing a mixed sample from a commercially available metabolite library in both hydrophilic and hydrophobic LC-MS/MS. These analyses confirm that metabolite identification can be significantly improved by estimating the element composition in formulas using stable isotope labeling, or by introducing LC retention time during a spectral library search, which are incorporated into JUMPm functions. Finally, we compared the performance of JUMPm and two commonly used programs, Compound Discoverer 3.1 and MZmine 2, with respect to putative metabolite identifications. Our results indicate that JUMPm is an effective tool for metabolite identification of both unlabeled and labeled data in untargeted metabolomics.

9.
Brain ; 143(2): 650-660, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31834365

RESUMO

To date, there is no validated fluid biomarker for tau pathology in Alzheimer's disease, with contradictory results from studies evaluating the correlation between phosphorylated tau in CSF with tau PET imaging. Tau protein is subjected to proteolytic processing into fragments before being secreted to the CSF. A recent study suggested that tau cleavage after amino acid 368 by asparagine endopeptidase (AEP) is upregulated in Alzheimer's disease. We used immunoprecipitation followed by mass spectrometric analyses to evaluate the presence of tau368 species in CSF. A novel Simoa® assay for quantification of tau368 in CSF was developed, while total tau (t-tau) was measured by ELISA and the presence of tau368 in tangles was evaluated using immunohistochemistry. The diagnostic utility of tau368 was first evaluated in a pilot study (Alzheimer's disease = 20, control = 20), then in a second cohort where the IWG-2 biomarker criteria were applied (Alzheimer's disease = 37, control = 45), and finally in a third cohort where the correlation with 18F-GTP1 tau PET was evaluated (Alzheimer's disease = 38, control = 11). The tau368/t-tau ratio was significantly decreased in Alzheimer's disease (P < 0.001) in all cohorts. Immunohistochemical staining demonstrated that tau fragments ending at 368 are present in tangles. There was a strong negative correlation between the CSF tau368/t-tau ratio and 18F-GTP1 retention. Our data suggest that tau368 is a tangle-enriched fragment and that the CSF ratio tau368/t-tau reflects tangle pathology. This novel tau biomarker could be used to improve diagnosis of Alzheimer's disease and to facilitate the development of drug candidates targeting tau pathology. Furthermore, future longitudinal studies will increase our understanding of tau pathophysiology in Alzheimer's disease and other tauopathies.


Assuntos
Doença de Alzheimer/líquido cefalorraquidiano , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Fragmentos de Peptídeos/líquido cefalorraquidiano , Proteínas tau/líquido cefalorraquidiano , Adulto , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Biomarcadores/líquido cefalorraquidiano , Estudos de Coortes , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade
10.
Anal Chem ; 91(20): 12882-12889, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31536324

RESUMO

Alzheimer's disease (AD) is one of the most common neurodegenerative diseases. The formation of amyloid plaques by aggregated amyloid beta (Aß) peptides is a primary event in AD pathology. Understanding the metabolomic features and related pathways is critical for studying plaque-related pathological events (e.g., cell death and neuron dysfunction). Mass spectrometry imaging (MSI), due to its high sensitivity and ability to obtain the spatial distribution of metabolites, has been applied to AD studies. However, limited studies of metabolites in amyloid plaques have been performed due to the drawbacks of the commonly used techniques such as matrix-assisted laser desorption/ionization MSI. In the current study, we obtained high spatial resolution (∼17 µm) MS images of the AD mouse brain using the Single-probe, a microscale sampling and ionization device, coupled to a mass spectrometer under ambient conditions. The adjacent slices were used to obtain fluorescence microscopy images to locate amyloid plaques. The MS image and the fluorescence microscopy image were fused to spatially correlate histological protein hallmarks with metabolomic features. The fused images produced significantly improved spatial resolution (∼5 µm), allowing for the determination of fine structures in MS images and metabolomic biomarkers representing amyloid plaques.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Encéfalo/patologia , Microscopia de Fluorescência/métodos , Imagem Multimodal/métodos , Placa Amiloide/patologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Encéfalo/metabolismo , Camundongos , Placa Amiloide/metabolismo
11.
Anal Chem ; 90(14): 8538-8545, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29883117

RESUMO

High throughput untargeted metabolomics usually relies on complementary liquid chromatography-mass spectrometry (LC-MS) methods to expand the coverage of diverse metabolites, but the integration of those methods is not fully characterized. We systematically investigated the performance of hydrophilic interaction liquid chromatography (HILIC)-MS and nanoflow reverse-phase liquid chromatography (nRPLC)-MS under 8 LC-MS settings, varying stationary phases (HILIC and C18), mobile phases (acidic and basic pH), and MS ionization modes (positive and negative). Whereas nRPLC-MS optimization was previously reported, we found in HILIC-MS (2.1 mm × 150 mm) that the optimal performance was achieved in a 90 min gradient with 100 µL/min flow rate by loading metabolite extracts from 2 mg of cell/tissue samples. Since peak features were highly compromised by contaminants, we used stable isotope labeled yeast to enhance formula identification for comparing different LC-MS conditions. The 8 LC-MS settings enabled the detection of a total of 1050 formulas, among which 78%, 73%, and 62% formulas were recovered by the best combination of 4, 3, and 2 LC-MS settings, respectively. Moreover, these yeast samples were harvested in the presence or absence of nitrogen starvation, enabling quantitative comparisons of altered formulas and metabolite structures, followed by validation with selected synthetic metabolites. The results revealed that nitrogen starvation downregulated amino acid components but upregulated uridine-related metabolism. In summary, this study introduces a thorough evaluation of hydrophilicity and hydrophobicity based LC-MS and provides information for selecting complementary settings to balance throughput and efficiency during metabolomics experiments.


Assuntos
Cromatografia Líquida/métodos , Metaboloma , Metabolômica/métodos , Espectrometria de Massas em Tandem/métodos , Aminoácidos/análise , Aminoácidos/metabolismo , Animais , Encéfalo/metabolismo , Química Encefálica , Cromatografia de Fase Reversa/métodos , Interações Hidrofóbicas e Hidrofílicas , Marcação por Isótopo/métodos , Nitrogênio/análise , Nitrogênio/metabolismo , Ratos , Leveduras/química , Leveduras/metabolismo
12.
J Proteome Res ; 17(7): 2328-2334, 2018 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-29790753

RESUMO

Metabolite identification is a crucial step in mass spectrometry (MS)-based metabolomics. However, it is still challenging to assess the confidence of assigned metabolites. We report a novel method for estimating the false discovery rate (FDR) of metabolite assignment with a target-decoy strategy, in which the decoys are generated through violating the octet rule of chemistry by adding small odd numbers of hydrogen atoms. The target-decoy strategy was integrated into JUMPm, an automated metabolite identification pipeline for large-scale MS analysis and was also evaluated with two other metabolomics tools, mzMatch and MZmine 2. The reliability of FDR calculation was examined by false data sets, which were simulated by altering MS1 or MS2 spectra. Finally, we used the JUMPm pipeline coupled to the target-decoy strategy to process unlabeled and stable-isotope-labeled metabolomic data sets. The results demonstrate that the target-decoy strategy is a simple and effective method for evaluating the confidence of high-throughput metabolite identification.


Assuntos
Metabolômica/métodos , Modelos Teóricos , Software , Espectrometria de Massas em Tandem/métodos , Leveduras/metabolismo , Algoritmos , Bases de Dados como Assunto , Reações Falso-Positivas , Ensaios de Triagem em Larga Escala , Metaboloma , Metabolômica/normas , Bibliotecas de Moléculas Pequenas
13.
Sci Rep ; 7(1): 4552, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28674401

RESUMO

We report an integrated workflow that allows mass spectrometry-based high-resolution hydroxyl radical protein footprinting (HR-HRPF) measurements to accurately measure the absolute average solvent accessible surface area () of amino acid side chains. This approach is based on application of multi-point HR-HRPF, electron-transfer dissociation (ETD) tandem MS (MS/MS) acquisition, measurement of effective radical doses by radical dosimetry, and proper normalization of the inherent reactivity of the amino acids. The accuracy of the resulting measurements was tested by using well-characterized protein models. Moreover, we demonstrated the ability to use measurements from HR-HRPF to differentiate molecular models of high accuracy (<3 Å backbone RMSD) from models of lower accuracy (>4 Å backbone RMSD). The ability of data from HR-HRPF to differentiate molecular model quality was found to be comparable to that of data obtained from X-ray crystal structures, indicating the accuracy and utility of HR-HRPF for evaluating the accuracy of computational models.


Assuntos
Radical Hidroxila/química , Modelos Moleculares , Conformação Proteica , Pegadas de Proteínas , Proteínas/química , Cromatografia Líquida , Muramidase/química , Relação Estrutura-Atividade , Espectrometria de Massas em Tandem
14.
J Am Soc Mass Spectrom ; 27(8): 1322-7, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27075875

RESUMO

One difficult problem in the analysis of peptide modifications is quantifying isomeric modifications that differ by the position of the amino acid modified. HPLC separation using C18 reverse phase chromatography coupled with electron transfer dissociation (ETD) in tandem mass spectrometry has recently been shown to be able to relatively quantify how much of a given modification occurs at each amino acid position for isomeric mixtures; however, the resolution of reverse phase chromatography greatly complicates quantification of isomeric modifications by ETD because of the chromatographic separation of peptides with identical modifications at different sequence positions. Using peptide oxidation as a model system, we investigated the use of size exclusion chromatography coupled with ETD fragmentation to separate peptide sequences. This approach allows for the benefits of chromatographic separation of peptide sequences while ensuring co-elution of modification isomers for accurate relative quantification of modifications using standard data-dependent acquisitions. Using this method, the relative amount of modification at each amino acid can be accurately measured from single ETD MS/MS spectra in a standard data-dependent acquisition experiment. Graphical Abstract ᅟ.


Assuntos
Cromatografia em Gel , Peptídeos , Processamento de Proteína Pós-Traducional , Espectrometria de Massas em Tandem , Sequência de Aminoácidos , Elétrons
15.
Anal Chem ; 87(21): 10719-23, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26455423

RESUMO

Hydroxyl radical protein footprinting (HRPF) by fast photochemical oxidation of proteins (FPOP) is a powerful benchtop tool used to probe protein structure, interactions, and conformational changes in solution. However, the reproducibility of all HRPF techniques is limited by the ability to deliver a defined concentration of hydroxyl radicals to the protein. This ability is impacted by both the amount of radical generated and the presence of radical scavengers in solution. In order to compare HRPF data from sample to sample, a hydroxyl radical dosimeter is needed that can measure the effective concentration of radical that is delivered to the protein, after accounting for both differences in hydroxyl radical generation and nonanalyte radical consumption. Here, we test three radical dosimeters (Alexa Fluor 488, terepthalic acid, and adenine) for their ability to quantitatively measure the effective radical dose under the high radical concentration conditions of FPOP. Adenine has a quantitative relationship between UV spectrophotometric response, effective hydroxyl radical dose delivered, and peptide and protein oxidation levels over the range of radical concentrations typically encountered in FPOP. The simplicity of an adenine-based dosimeter allows for convenient and flexible incorporation into FPOP applications, and the ability to accurately measure the delivered radical dose will enable reproducible and reliable FPOP across a variety of platforms and applications.


Assuntos
Radical Hidroxila/análise , Óptica e Fotônica , Pegadas de Proteínas/métodos , Proteínas/química , Radical Hidroxila/química , Oxirredução
16.
J Am Soc Mass Spectrom ; 26(8): 1424-7, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25916598

RESUMO

Hydroxyl radical protein footprinting (HRPF) is an MS-based technique for analyzing protein structure based on measuring the oxidation of amino acid side chains by hydroxyl radicals diffusing in solution. Spatial resolution of HRPF is limited by the smallest portion of the protein for which oxidation amounts can be accurately quantitated. Previous work has shown electron transfer dissociation (ETD) to be the most reliable method for quantifying the amount of oxidation of each amino acid side chain in a mixture of peptide oxidation isomers, but efficient ETD requires high peptide charge states, which limits its applicability for HRPF. Supercharging reagents have been used to enhance peptide charge state for ETD analysis, but previous work has shown supercharging reagents to enhance charge state differently for different peptides sequences; it is currently unknown if different oxidation isomers will experience different charge enhancement effects. Here, we report the effect of m-nitrobenzyl alcohol (m-NBA) on the ETD-based quantification of peptide oxidation. The addition of m-NBA to both a defined mixture of synthetic isomeric oxidized peptides and Robo-1 protein subjected to HRPF increased the abundance of higher charge state ions, improving our ability to perform efficient ETD of the mixture. No differences in the reported quantitation by ETD were noted in the presence or absence of m-NBA, indicating that all oxidation isomers were charge-enhanced to a similar extent. These results indicate the utility of m-NBA for residue-level quantification of peptide oxidation in HRPF and other applications.


Assuntos
Álcoois Benzílicos/química , Radical Hidroxila/química , Fragmentos de Peptídeos/análise , Fragmentos de Peptídeos/química , Pegadas de Proteínas/métodos , Radical Hidroxila/análise , Radical Hidroxila/metabolismo , Isomerismo , Espectrometria de Massas , Oxirredução , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , Tripsina/metabolismo
17.
J Am Soc Mass Spectrom ; 24(11): 1767-76, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24014150

RESUMO

Protein oxidation is typically associated with oxidative stress and aging and affects protein function in normal and pathological processes. Additionally, deliberate oxidative labeling is used to probe protein structure and protein-ligand interactions in hydroxyl radical protein footprinting (HRPF). Oxidation often occurs at multiple sites, leading to mixtures of oxidation isomers that differ only by the site of modification. We utilized sets of synthetic, isomeric "oxidized" peptides to test and compare the ability of electron-transfer dissociation (ETD) and collision-induced dissociation (CID), as well as nano-ultra high performance liquid chromatography (nanoUPLC) separation, to quantitate oxidation isomers with one oxidation at multiple adjacent sites in mixtures of peptides. Tandem mass spectrometry by ETD generates fragment ion ratios that accurately report on relative oxidative modification extent on specific sites, regardless of the charge state of the precursor ion. Conversely, CID was found to generate quantitative MS/MS product ions only at the higher precursor charge state. Oxidized isomers having multiple sites of oxidation in each of two peptide sequences in HRPF product of protein Robo-1 Ig1-2, a protein involved in nervous system axon guidance, were also identified and the oxidation extent at each residue was quantified by ETD without prior liquid chromatography (LC) separation. ETD has proven to be a reliable technique for simultaneous identification and relative quantification of a variety of functionally different oxidation isomers, and is a valuable tool for the study of oxidative stress, as well as for improving spatial resolution for HRPF studies.


Assuntos
Radical Hidroxila , Peptídeos/química , Pegadas de Proteínas/métodos , Proteínas/química , Sequência de Aminoácidos , Cromatografia Líquida de Alta Pressão , Elétrons , Humanos , Proteínas do Tecido Nervoso/química , Oxirredução , Peptídeos/isolamento & purificação , Receptores Imunológicos/química , Espectrometria de Massas em Tandem/métodos , Proteínas Roundabout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...