Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(14): 140802, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38640392

RESUMO

Quantum dense coding (QDC) means to transmit two classical bits by only transferring one quantum bit, which has enabled high-capacity information transmission and strengthened system security. Continuous-variable QDC offers a promising solution to increase communication rates while achieving seamless integration with classical communication systems. Here, we propose and experimentally demonstrate a high-speed quantum radio-frequency-over-light (RFOL) communication scheme based on QDC with an entangled state, and achieve a practical rate of 20 Mbps through digital modulation and RFOL communication. This scheme bridges the gap between quantum technology and real-world communication systems, which bring QDC closer to practical applications and offer prospects for further enhancement of metropolitan communication networks.

2.
Nat Commun ; 13(1): 2368, 2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35501315

RESUMO

High-performance quantum memory for quantized states of light is a prerequisite building block of quantum information technology. Despite great progresses of optical quantum memories based on interactions of light and atoms, physical features of these memories still cannot satisfy requirements for applications in practical quantum information systems, since all of them suffer from trade-off between memory efficiency and excess noise. Here, we report a high-performance cavity-enhanced electromagnetically-induced-transparency memory with warm atomic cell in which a scheme of optimizing the spatial and temporal modes based on the time-reversal approach is applied. The memory efficiency up to 67 ± 1% is directly measured and a noise level close to quantum noise limit is simultaneously reached. It has been experimentally demonstrated that the average fidelities for a set of input coherent states with different phases and amplitudes within a Gaussian distribution have exceeded the classical benchmark fidelities. Thus the realized quantum memory platform has been capable of preserving quantized optical states, and is ready to be applied in quantum information systems, such as distributed quantum logic gates and quantum-enhanced atomic magnetometry.

3.
Phys Rev Lett ; 125(7): 070502, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32857565

RESUMO

Channel multiplexing quantum communication based on exploiting continuous-variable entanglement of optical modes offers great potential to enhance channel capacity and save quantum resource. Here, we present a frequency-comb-type control scheme for simultaneously extracting a lot of entangled sideband modes with arbitrary frequency detuning from a squeezed state of light. We experimentally demonstrate fourfold channel multiplexing quantum dense coding communication by exploiting the extracted four pairs of entangled sideband modes. Due to high entanglement and wide frequency separation between each entangled pairs, these quantum channels have large channel capacity and the cross talking effect can be avoided. The achieved channel capacities have surpassed that of all classical and quantum communication under the same bandwidth published so far. The presented scheme can be extended to more channels if more entangled sideband modes are extracted.

4.
Phys Rev Lett ; 124(17): 173602, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32412253

RESUMO

High precision interferometers are the building blocks of precision metrology and the ultimate interferometric sensitivity is limited by the quantum noise. Here, we propose and experimentally demonstrate a compact quantum interferometer involving two optical parametric amplifiers and the squeezed states generated within the interferometer are directly used for the phase-sensing quantum state. By both squeezing shot noise and amplifying phase-sensing intensity the sensitivity improvement of 4.86±0.24 dB beyond the standard quantum limit is deterministically realized and a minimum detectable phase smaller than that of all present interferometers under the same phase-sensing intensity is achieved. This interferometric system has significantly potential applications in a variety of measurements for tiny variances of physical quantities.

5.
Sci Adv ; 4(10): eaas9401, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30345350

RESUMO

Quantum teleportation, which is the transfer of an unknown quantum state from one station to another over a certain distance with the help of nonlocal entanglement shared by a sender and a receiver, has been widely used as a fundamental element in quantum communication and quantum computation. Optical fibers are crucial information channels, but teleportation of continuous variable optical modes through fibers has not been realized so far. Here, we experimentally demonstrate deterministic quantum teleportation of an optical coherent state through fiber channels. Two sub-modes of an Einstein-Podolsky-Rosen entangled state are distributed to a sender and a receiver through a 3.0-km fiber, which acts as a quantum resource. The deterministic teleportation of optical modes over a fiber channel of 6.0 km is realized. A fidelity of 0.62 ± 0.03 is achieved for the retrieved quantum state, which breaks through the classical limit of 1/2. Our work provides a feasible scheme to implement deterministic quantum teleportation in communication networks.

6.
Phys Rev Lett ; 121(15): 150502, 2018 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-30362796

RESUMO

Secret sharing is a conventional technique for realizing secure communications in information networks, where a dealer distributes to n players a secret, which can only be decoded through the cooperation of k (n/2

7.
Nat Commun ; 8(1): 718, 2017 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-28959032

RESUMO

It is crucial for the physical realization of quantum information networks to first establish entanglement among multiple space-separated quantum memories and then, at a user-controlled moment, to transfer the stored entanglement to quantum channels for distribution and conveyance of information. Here we present an experimental demonstration on generation, storage, and transfer of deterministic quantum entanglement among three spatially separated atomic ensembles. The off-line prepared multipartite entanglement of optical modes is mapped into three distant atomic ensembles to establish entanglement of atomic spin waves via electromagnetically induced transparency light-matter interaction. Then the stored atomic entanglement is transferred into a tripartite quadrature entangled state of light, which is space-separated and can be dynamically allocated to three quantum channels for conveying quantum information. The existence of entanglement among three released optical modes verifies that the system has the capacity to preserve multipartite entanglement. The presented protocol can be directly extended to larger quantum networks with more nodes.Continuous-variable encoding is a promising approach for quantum information and communication networks. Here, the authors show how to map entanglement from three spatial optical modes to three separated atomic samples via electromagnetically induced transparency, releasing it later on demand.

8.
Phys Rev Lett ; 118(23): 230501, 2017 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-28644631

RESUMO

Understanding how quantum resources can be quantified and distributed over many parties has profound applications in quantum communication. As one of the most intriguing features of quantum mechanics, Einstein-Podolsky-Rosen (EPR) steering is a useful resource for secure quantum networks. By reconstructing the covariance matrix of a continuous variable four-mode square Gaussian cluster state subject to asymmetric loss, we quantify the amount of bipartite steering with a variable number of modes per party, and verify recently introduced monogamy relations for Gaussian steerability, which establish quantitative constraints on the security of information shared among different parties. We observe a very rich structure for the steering distribution, and demonstrate one-way EPR steering of the cluster state under Gaussian measurements, as well as one-to-multimode steering. Our experiment paves the way for exploiting EPR steering in Gaussian cluster states as a valuable resource for multiparty quantum information tasks.

9.
Sci Rep ; 7: 44475, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28295024

RESUMO

A quantum communication network can be constructed by distributing a multipartite entangled state to space-separated nodes. Entangled optical beams with highest flying speed and measurable brightness can be used as carriers to convey information in quantum communication networks. Losses and noises existing in real communication channels will reduce or even totally destroy entanglement. The phenomenon of disentanglement will result in the complete failure of quantum communication. Here, we present the experimental demonstrations on the disentanglement and the entanglement revival of tripartite entangled optical beams used in a quantum network. We experimentally demonstrate that symmetric tripartite entangled optical beams are robust in pure lossy but noiseless channels. In a noisy channel, the excess noise will lead to the disentanglement and the destroyed entanglement can be revived by the use of a correlated noisy channel (non-Markovian environment). The presented results provide useful technical references for establishing quantum networks.

10.
Phys Rev Lett ; 117(24): 240503, 2016 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-28009187

RESUMO

Quantum entanglement swapping is one of the most promising ways to realize the quantum connection among local quantum nodes. In this Letter, we present an experimental demonstration of the entanglement swapping between two independent multipartite entangled states, each of which involves a tripartite Greenberger-Horne-Zeilinger (GHZ) entangled state of an optical field. The entanglement swapping is implemented deterministically by means of a joint measurement on two optical modes coming from the two multipartite entangled states respectively and the classical feedforward of the measurement results. After entanglement swapping the two independent multipartite entangled states are merged into a large entangled state in which all unmeasured quantum modes are entangled. The entanglement swapping between a tripartite GHZ state and an Einstein-Podolsky-Rosen entangled state is also demonstrated and the dependence of the resultant entanglement on transmission loss is investigated. The presented experiment provides a feasible technical reference for constructing more complicated quantum networks.

11.
Sci Rep ; 6: 25715, 2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27165122

RESUMO

Entanglement of two distant macroscopic objects is a key element for implementing large-scale quantum networks consisting of quantum channels and quantum nodes. Entanglement swapping can entangle two spatially separated quantum systems without direct interaction. Here we propose a scheme of deterministically entangling two remote atomic ensembles via continuous-variable entanglement swapping between two independent quantum systems involving light and atoms. Each of two stationary atomic ensembles placed at two remote nodes in a quantum network is prepared to a mixed entangled state of light and atoms respectively. Then, the entanglement swapping is unconditionally implemented between the two prepared quantum systems by means of the balanced homodyne detection of light and the feedback of the measured results. Finally, the established entanglement between two macroscopic atomic ensembles is verified by the inseparability criterion of correlation variances between two anti-Stokes optical beams respectively coming from the two atomic ensembles.

12.
Sci Rep ; 6: 22914, 2016 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-26961962

RESUMO

Quantum simulation enables one to mimic the evolution of other quantum systems using a controllable quantum system. Quantum harmonic oscillator (QHO) is one of the most important model systems in quantum physics. To observe the transient dynamics of a QHO with high oscillation frequency directly is difficult. We experimentally simulate the transient behaviors of QHO in an open system during time evolution with an optical mode and a logical operation system of continuous variable quantum computation. The time evolution of an atomic ensemble in the collective spontaneous emission is analytically simulated by mapping the atomic ensemble onto a QHO. The measured fidelity, which is used for quantifying the quality of the simulation, is higher than its classical limit. The presented simulation scheme provides a new tool for studying the dynamic behaviors of QHO.

13.
Sci Rep ; 5: 15462, 2015 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-26498395

RESUMO

Quantum error correction protects the quantum state against noise and decoherence in quantum communication and quantum computation, which enables one to perform fault-torrent quantum information processing. We experimentally demonstrate a quantum error correction scheme with a five-wave-packet code against a single stochastic error, the original theoretical model of which was firstly proposed by S. L. Braunstein and T. A. Walker. Five submodes of a continuous variable cluster entangled state of light are used for five encoding channels. Especially, in our encoding scheme the information of the input state is only distributed on three of the five channels and thus any error appearing in the remained two channels never affects the output state, i.e. the output quantum state is immune from the error in the two channels. The stochastic error on a single channel is corrected for both vacuum and squeezed input states and the achieved fidelities of the output states are beyond the corresponding classical limit.

14.
Sci Rep ; 5: 11132, 2015 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-26047357

RESUMO

The non-measurement based coherent feedback control (CFC) is a control method without introducing any backaction noise into the controlled system, thus is specially suitable to manipulate various quantum optical systems for preparing nonclassical states of light. By simply tuning the transmissivity of an optical controller in a CFC loop attached to a non-degenerate optical parametric amplifier (NOPA), the quantum entanglement degree of the output optical entangled state of the system is improved. At the same time, the threshold pump power of the NOPA is reduced also. The experimental results are in reasonable agreement with the theoretical expectation.

15.
Opt Express ; 23(4): 4952-9, 2015 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-25836530

RESUMO

Entangled state of light is one of the essential quantum resources in quantum information science and technology. Especially, when the fundamental principle experiments have been achieved in labs and the applications of continuous variable quantum information in the real world are considered, it is crucial to design and construct the generation devices of entangled states with high entanglement and compact configuration. We have designed and built an efficient and compact light source of entangled state, which is a non-degenerate optical parametric amplifier (NOPA) with the triple resonance of the pump and two subharmonic modes. A wedged type-II KTP crystal inside the NOPA is used for implementing frequency-down-conversion of the pump field to generate the optical entangled state and achieving the dispersion compensation between the pump and the subharmonic waves. The EPR entangled state of light with quantum correlations of 8.4 dB for both amplitude and phase quadratures are experimentally produced by a single NOPA under the pump power of 75 mW.

16.
Phys Rev Lett ; 111(24): 240503, 2013 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-24483636

RESUMO

Long-lived and high-fidelity memory for a photonic polarization qubit (PPQ) is crucial for constructing quantum networks. We present a millisecond storage system based on electromagnetically induced transparency, in which a moderate magnetic field is applied on a cold-atom cloud to lift Zeeman degeneracy and, thus, the PPQ states are stored as two magnetic-field-insensitive spin waves. Especially, the influence of magnetic-field-sensitive spin waves on the storage performances is almost totally avoided. The measured average fidelities of the polarization states are 98.6% at 200 µs and 78.4% at 4.5 ms, respectively.

17.
Opt Lett ; 37(24): 5178-80, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23258044

RESUMO

The preparation of multipartite entangled states is the prerequisite for exploring quantum information networks and quantum computation. In this Letter, we present what we believe is the first experimental demonstration of an eight-partite spatially separated continuous variable (CV) cluster state of optical modes. Via the linearly optical transformation of eight squeezed states of light, the eight-partite cluster entangled state with amplitude and phase quadrature correlations are prepared. The generated eight entangled photonic qumodes are spatially separated, which provides valuable quantum resources for implementing CV quantum information protocols.

18.
Phys Rev Lett ; 108(19): 190501, 2012 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-23003012

RESUMO

The superactivation of multipartite bound entanglement (BE) is a special protocol proposed by Shor et al. in 2003, which can distill Einstein-Podolsky-Rosen (EPR) entanglement states between two subsystems of two multipartite BE states. Here we present the first experimental realization of the superactivation of the BE state, in which two copies of the four-partite unlockable BE state in a continuous-variable regime are used. Coupling two thermal states with Gaussian noises into two submodes of an EPR entangled state on two 50-50 beam splitters respectively, the four output optical modes form a four-partite unlocklable BE state. Using two EPR entangled states, we experimentally produce two BE states first. Then through a superactivation operation involving measurements and feedback on the two BE states, an EPR entangled state is distilled out between two designated parties of the two four-partite BE states. The experiment demonstrates the superadditivity of quantum entanglement as the individual BE state cannot be distilled, only two BE states together can be distilled.

19.
Phys Rev Lett ; 109(25): 253604, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23368462

RESUMO

Entangled states of light including low-loss optical fiber transmission and atomic resonance frequencies are essential resources for future quantum information networks. We present the experimental achievement on the three-color entanglement generation at 852, 1550, and 1440 nm wavelengths for optical continuous variables. The entanglement generation system consists of two cascaded nondegenerated optical parametric oscillators (NOPOs). The flexible selectivity of nonlinear crystals in the two NOPOs and the tunable property of NOPO provide large freedom for the frequency selection of three entangled optical beams. The presented system will hopefully be developed as a practical entangled source to be used in quantum-information networks with atomic storage units and long fiber transmission lines.

20.
Phys Rev Lett ; 106(15): 153602, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21568558

RESUMO

We present the first experimental observation of quantum fluctuation spectra in two coupled optical cavities with an injected squeezed vacuum light. The quadrature components of the reflected squeezed vacuum spectra are measured by phase-sensitive homodyne detector. The experimental results demonstrate coupled-resonator-induced transparency in the quantum regime, in which the electromagnetically-induced-transparency-like characteristic of the absorption and dispersion properties of the coupled optical cavities determines the line shape of the reflected quantum noise spectra.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...