Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(6): e2307297, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38044294

RESUMO

When spin-orbit coupling (SOC) is absent, all proposed half-metals with twofold degenerate nodal points at the K (or K') point in 2D materials are classified as "Dirac half-metals" owing to the way graphene is utilized in the earliest studies. Actually, each band crossing point at the K or K' point is described by a 2D Weyl Hamiltonian with definite chirality; hence, it should be a Weyl point. To the best of its knowledge, there have not yet been any reports of a genuine (i.e., fourfold degenerate) 2D Dirac point half-metal. In this work, using first-principles calculations, it proposes for the first time that the 2D d0 -type ferromagnet Mg4 N4 is a genuine 2D Dirac half-metal candidate with a fourfold degenerate Dirac point at the S high-symmetry point, intrinsic magnetism, a high Curie temperature, 100% spin polarization, topology robust under the SOC and uniaxial and biaxial strains, and spin-polarized edge states. This work can serve as a starting point for future predictions of intrinsically magnetic materials with genuine 2D Dirac points, which will aid the frontier of topo-spintronics research in 2D systems.

2.
Sci Rep ; 10(1): 8868, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32483252

RESUMO

Based on a combination of the CALYPSO method for crystal structure prediction and first-principles calculations, we explore the crystal structures of VH2 under the pressure range of 0-300 GPa. The cubic Fm-3m phase with regular VH8 cubes is predicted to transform into orthorhombic Pnma structure with fascinating distorted VH9 tetrakaidecahedrons at 47.36 GPa. Both the Fm-3m phase at 0 GPa and the Pnma phase at 100 GPa are mechanically and dynamically stable, as verified with the calculations of elastic constants and phonon dispersions, respectively. Moreover, the calculated electronic band structure and density of states indicate both stable phases are metallic. Remarkably, the analyses of the Poisson's ratio, electron localization function (ELF) and Bader charge substantiate that both stable phases are ionic crystals on account of effective charges transferring from V atom to H. On the basis of the microscopic hardness model, the Fm-3m and Pnma crystals of VH2 are potentially incompressible and hard materials with the hardness values of 17.83 and 17.68 GPa, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...