Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(15): e2308720, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38189549

RESUMO

Template-directed self-assembly of solidifying eutectics results in emergence of unique microstructures due to diffusion constraints and thermal gradients imposed by the template. Here, the importance of selecting the template material based on its conductivity to control heat transfer between the template and the solidifying eutectic, and thus the thermal gradients near the solidification front, is demonstrated. Simulations elucidate the relationship between the thermal properties of the eutectic and template and the resultant microstructure. The overarching finding is that templates with low thermal conductivities are generally advantageous for forming highly organized microstructures. When electrochemically porosified silicon pillars (thermal conductivity < 0.3 Wm-1K-1) are used as the template into which an AgCl-KCl eutectic is solidified, 99% of the unit cells in the solidified structure exhibit the same pattern. In contrast, when higher thermal conductivity crystalline silicon pillars (≈100 Wm-1K-1) are utilized, the expected pattern is only present in 50% of the unit cells. The thermally engineered template results in mesostructures with tunable optical properties and reflectances nearly identical to the simulated reflectances of perfect structures, indicating highly ordered patterns are formed over large areas. This work highlights the importance of controlling heat flows in template-directed self-assembly of eutectics.

2.
ACS Photonics ; 10(9): 3008-3019, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37743940

RESUMO

Multiphoton lithography inside a mesoporous host can create optical components with continuously tunable refractive indices in three-dimensional (3D) space. However, the process is very sensitive at exposure doses near the photoresist threshold, leading previous work to reliably achieve only a fraction of the available refractive index range for a given material system. Here, we present a method for greatly enhancing the uniformity of the subsurface micro-optics, increasing the reliable index range from 0.12 (in prior work) to 0.37 and decreasing the standard deviation (SD) at threshold from 0.13 to 0.0021. Three modifications to the previous method enable higher uniformity in all three spatial dimensions: (1) calibrating the planar write field of mirror galvanometers using a spatially varying optical transmission function which corrects for large-scale optical aberrations; (2) periodically relocating the piezoelectrically driven stage, termed piezo-galvo dithering, to reduce small-scale errors in writing; and (3) enforcing a constant time between each lateral cross section to reduce variation across all writing depths. With this new method, accurate fabrication of optics of any index between n = 1.20 and 1.57 (SD < 0.012 across the full range) was achieved inside a volume of porous silica. We demonstrate the importance of this increased accuracy and precision by fabricating and characterizing calibrated two-dimensional (2D) line gratings and flat gradient index lenses with significantly better performance than the corresponding control devices. As a visual representation, the University of Illinois logo made with 2D line gratings shows significant improvement in its color uniformity across its width.

3.
Nat Commun ; 14(1): 3119, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37253761

RESUMO

Compact visible wavelength achromats are essential for miniaturized and lightweight optics. However, fabrication of such achromats has proved to be exceptionally challenging. Here, using subsurface 3D printing inside mesoporous hosts we densely integrate aligned refractive and diffractive elements, forming thin high performance hybrid achromatic imaging micro-optics. Focusing efficiencies of 51-70% are achieved for 15µm thick, 90µm diameter, 0.3 numerical aperture microlenses. Chromatic focal length errors of less than 3% allow these microlenses to form high-quality images under broadband illumination (400-700 nm). Numerical apertures upwards of 0.47 are also achieved at the cost of some focusing efficiency, demonstrating the flexibility of this approach. Furthermore, larger area images are reconstructed from an array of hybrid achromatic microlenses, laying the groundwork for achromatic light-field imagers and displays. The presented approach precisely combines optical components within 3D space to achieve thin lens systems with high focusing efficiencies, high numerical apertures, and low chromatic focusing errors, providing a pathway towards achromatic micro-optical systems.

4.
Light Sci Appl ; 9(1): 196, 2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33298832

RESUMO

Direct laser writing (DLW) has been shown to render 3D polymeric optical components, including lenses, beam expanders, and mirrors, with submicrometer precision. However, these printed structures are limited to the refractive index and dispersive properties of the photopolymer. Here, we present the subsurface controllable refractive index via beam exposure (SCRIBE) method, a lithographic approach that enables the tuning of the refractive index over a range of greater than 0.3 by performing DLW inside photoresist-filled nanoporous silicon and silica scaffolds. Adjusting the laser exposure during printing enables 3D submicron control of the polymer infilling and thus the refractive index and chromatic dispersion. Combining SCRIBE's unprecedented index range and 3D writing accuracy has realized the world's smallest (15 µm diameter) spherical Luneburg lens operating at visible wavelengths. SCRIBE's ability to tune the chromatic dispersion alongside the refractive index was leveraged to render achromatic doublets in a single printing step, eliminating the need for multiple photoresins and writing sequences. SCRIBE also has the potential to form multicomponent optics by cascading optical elements within a scaffold. As a demonstration, stacked focusing structures that generate photonic nanojets were fabricated inside porous silicon. Finally, an all-pass ring resonator was coupled to a subsurface 3D waveguide. The measured quality factor of 4600 at 1550 nm suggests the possibility of compact photonic systems with optical interconnects that traverse multiple planes. SCRIBE is uniquely suited for constructing such photonic integrated circuits due to its ability to integrate multiple optical components, including lenses and waveguides, without additional printed supports.

5.
Soft Matter ; 15(21): 4294-4300, 2019 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-31095159

RESUMO

Structural whiteness, stemming from biologically evolutionarily refined structures, provides inspiration for designing promising, reflectance-based materials. White beetles Goliathus goliatus, which can survive in high-temperature-equatorial forests, may suggest undiscovered new physical mechanisms for thermoregulation. Their scales' whiteness is created by the exquisite shell/hollow cylinder structure with two thermoregulatory effects, contributing to a lower equilibrium temperature of elytra under direct sunlight. In the visible regime, they enhance the broadband omnidirectional reflection significantly by synergetic structural effects originating from the thin-film interference, Mie resonance and total reflection. In the mid-infrared (MIR) regime, white scales act as antireflective layers to increase the emissivity in the MIR range, enabling the elytra to reradiate heat to the environment and help the beetles reduce their temperature by as much as ∼7.8 °C in air. These biological strategies for thermoregulation could provide new approaches for bioinspired coatings towards passive radiative cooling.


Assuntos
Besouros , Temperatura Alta , Fenômenos Ópticos , Luz Solar , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...