Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38082588

RESUMO

Neuromuscular electrical stimulation (NMES) has been demonstrated to effectively modulate cortical activities by evoking muscle contraction in upper limb and generating joint movements, which showed an excellent performance in motor rehabilitation. However, due to hand loss and cortical function reorganization induced by hand amputation, how neural activities in sensorimotor cortex response to NMES-evoked muscle contraction in the end of an amputation stump is not clear. In this paper, Ischemic nerve block (INB) technique was used to build an acute hand loss model, and 64-channel EEG signals were recorded from 11 healthy subjects to perform a 2×2 factorial design protocol, with the INB state and the current intensity as factors. The changes of NMES-evoked sensorimotor cortical activities were quantified by computing Beta-band event-related desynchronization (Beta ERD) patterns and the time-varying functional connectivity using adaptive directed transfer function (ADTF) before and during INB. The acute hand "loss" resulted in ipsilateral dominance of Beta ERD induced by NMES with two current intensities in the topographic maps, that is, ipsilateral Beta ERD was significantly higher than that the contralateral one (p<0.05). However, before INB, Beta ERD in the contralateral sensorimotor cortex induced by NMES above motor threshold was significantly higher than that in the ipsilateral area (p< 0.01). Meanwhile, whatever before or during INB, clustering coefficients of the ADTF network in sensorimotor cortex showed temporal dynamics during two NMES tasks. During INB, NMES above motor threshold-evoked lower clustering coefficients of the time-varying network in sensorimotor cortex than that before INB (p<0.05). The present results suggest that the loss of the hand proprioception will degrade cortical activities in the contralateral area, and increase cortical activities in the ipsilateral area compensatively responding to NMES. This finding may be particularly important to improve the reconstruction of the proprioception function of hand prosthesis.


Assuntos
Córtex Motor , Córtex Sensório-Motor , Humanos , Córtex Motor/fisiologia , Córtex Sensório-Motor/fisiologia , Mãos , Movimento/fisiologia , Cotos de Amputação
2.
Front Plant Sci ; 9: 440, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29686688

RESUMO

Field experiments were conducted in marginal lands, i.e., sub-humid climate and saline-land (SHS) and semi-arid climate and wasteland (SAW), to evaluate ethanol potential based on the biomass yield and chemical composition of biomass type (var. GN-2, GN-4, and GN-10) and sweet type (var. GT-3 and GT-7) hybrids of energy sorghum [Sorghum bicolor (L.) Moench] in comparison with sub-humid climate and cropland (SHC) in northern China. Results showed that environment significantly (p < 0.05) influenced plant growth, biomass yield and components, and subsequently the ethanol potential of energy sorghum. Biomass and theoretical ethanol yield of the crop grown at SHS (12.2 t ha-1 and 3,425 L ha-1, respectively) and SAW (8.6 t ha-1 and 2,091 L ha-1, respectively) were both statistically (p < 0.001) lower than values at the SHC site (32.6 t ha-1 and 11,853 L ha-1, respectively). Higher desirable contents of soluble sugar, cellulose, and hemicellulose were observed at SHS and SHC sites, while sorghum grown at SAW possessed higher lignin and ash contents. Biomass type sorghum was superior to sweet type as non-food ethanol feedstock. In particular, biomass type hybrid GN-10 achieved the highest biomass (17.4 t ha-1) and theoretical ethanol yields (5,423 L ha-1) after averaging data for all environmental sites. The most productive hybrid, biomass type GN-4, exhibited biomass and theoretical ethanol yields >42.1 t ha-1 and 14,913 L ha-1, respectively, at the cropland SHC site. In conclusion, energy sorghum grown on marginal lands showed a very lower ethanol potential, indicating a considerable lower possibility for being used as commercial feedstock supply when compared with that grown on regular croplands. Moreover, screening suitable varieties may improve energy sorghum growth and chemical properties for ethanol production on marginal lands.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...