Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Cancers (Basel) ; 16(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38893229

RESUMO

BACKGROUND: Both cervical cancer and cervical intraepithelial neoplasia (CIN) are associated with human papillomavirus (HPV) infection at different anogenital sites, but the infection features of high-risk (HR) HPVs at these sites and their association with cervical lesions have not been well characterized. Given the limitation of cervical HPV 16/18 test in screening patients with high-grade CIN (CIN 2+), studies on whether non-16/18 HR-HPV subtype(s) have potential as additional indicator(s) to improve CIN 2+ screening are needed. METHODS: The infection of 15 HR-HPVs in vulva, anus, vagina, and cervix of 499 Chinese women was analyzed, and CIN lesion-associated HR-HPV subtypes were revealed. RESULTS: In addition to the well-known cervical-cancer-associated HPV 16, 52, and 58, HPV 51, 53, and 56 were also identified as high-frequency detected subtypes prevalently and consistently present at the anogenital sites studied, preferentially in multi-infection patterns. HPV 16, 52, 58, 56, and 53 were the top five prevalent subtypes in patients with CIN 2+. In addition, we found that cervical HPV 33/35/52/53/56/58 co-testing with HPV 16/18 might improve CIN 2+ screening performance. CONCLUSION: This study provided a new insight into HR-HPV screening strategy based on different subtype combinations, which might be used in risk stratification clinically.

2.
Ecotoxicol Environ Saf ; 273: 116172, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38458072

RESUMO

The toxicity of 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is generally believed to be mediated by aryl hydrocarbon receptor (AhR), but some evidence suggests that the effects of TCDD can also be produced through AhR-independent mechanisms. In previous experiments, we found that mainly AhR-dependent mechanism was involved in the migration inhibition of glioblastoma U87 cells by TCDD. Due to the heterogeneity of glioblastomas, not all tumor cells have significant AhR expression. The effects and mechanisms of TCDD on the migration of glioblastomas with low AhR expression are still unclear. We employed a glioblastoma cell line A172 with low AhR expression as a model, using wound healing and Transwell® assay to detect the effect of TCDD on cell migration. We found that TCDD can inhibit the migration of A172 cells without activating AhR signaling pathway. Further, after being pre-treated with AhR antagonist CH223191, the inhibition of TCDD on A172 cells migration was not changed, indicating that the effect of TCDD on A172 cells is not dependent on AhR activation. By transcriptome sequencing analysis, we propose dysregulation of the expression of certain migration-related genes, such as IL6, IL1B, CXCL8, FOS, SYK, and PTGS2 involved in cytokines, MAPK, NF-κB, and IL-17 signaling pathways, as potential AhR-independent mechanisms that mediate the inhibition of TCDD migration in A172 cells.


Assuntos
Glioblastoma , Dibenzodioxinas Policloradas , Humanos , Dibenzodioxinas Policloradas/toxicidade , Dibenzodioxinas Policloradas/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Transdução de Sinais , Movimento Celular
3.
Chemosphere ; 349: 140767, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37992903

RESUMO

Given its wide distribution in the environment and latent toxic effects, 1,3,6,8-tetrabromo-9H-carbazole (1368-BCZ) is an emerging concern that has gained increasing attention globally. 1368-BCZ exposure is reported to have potential cardiovascular toxicity. Although atherosclerosis is a cardiovascular disease and remains a primary cause of mortality worldwide, no evidence has been found regarding the impact of 1368-BCZ on atherosclerosis. Therefore, we aimed to explore the deleterious effects of 1368-BCZ on atherosclerosis and the underlying mechanisms. Serum samples from 1368-BCZ-treated atherosclerotic model mice were subjected to metabolomic profiling to investigate the adverse influence of the pollutant. Subsequently, the molecular mechanism associated with the metabolic pathway of atherosclerotic mice that was identified following 1368-BCZ exposure was validated in vitro. Serum metabolomics analysis revealed that 1368-BCZ significantly altered the tricarboxylic acid cycle, causing a disturbance in energy metabolism. In vitro, we further validated general markers of energy metabolism based on metabolome data: 1368-BCZ dampened adenosine triphosphate (ATP) synthesis and increased reactive oxygen species (ROS) production. Furthermore, blocking the aryl hydrocarbon receptor (AhR) reversed the high production of ROS induced by 1368-BCZ. It is concluded that 1368-BCZ decreased the ATP synthesis by disturbing the energy metabolism, thereby stimulating the AhR-mediated ROS production and presumably causing aggravated atherosclerosis. This is the first comprehensive study on the cardiovascular toxicity and mechanism of 1368-BCZ based on rodent models of atherosclerosis and integrated with in vitro models.


Assuntos
Aterosclerose , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Animais , Camundongos , Espécies Reativas de Oxigênio , Metabolômica , Aterosclerose/induzido quimicamente , Aterosclerose/metabolismo , Trifosfato de Adenosina
4.
Ecotoxicol Environ Saf ; 249: 114462, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38321681

RESUMO

Dechlorane 602 (Dec 602) has biomagnification potential. Our previous studies suggested that exposure to Dec 602 for 7 days induced colonic inflammation even after 7 days of recovery. To shed some light on the underlying mechanisms, disturbances of gut immunity and gene expression were further studied. Adult C57BL/6 mice were administered orally with Dec 602 for 7 days, then allowed to recover for another 7 days. Colonic type 3 innate lymphoid cells (ILC3s) in lamina propria lymphocytes (LPLs) and lymphocytes in mesenteric lymph nodes (MLNs) were examined by flow cytometry. Expressions of genes in the gut were determined by RNA-Seq. It was found that Dec 602 exposure up-regulated the percentage of CD4+ T cells in MLNs. The mean fluorescent intensity (MFI) of interleukin (IL)- 22 in LPLs was decreased, while the MFI of IL-17a as well as the percentage of IL-17a+ ILC3s in LPLs were increased after exposure to Dec 602. Genes involved in the formation of blood vessels and epithelial-mesenchymal transition were up-regulated by Dec 602. Ingenuity pathway analysis of differentially expressed genes predicted that exposure to Dec 602 resulted in the activation of liver X receptor/retinoid X receptor (LXR/RXR) and suppression of muscle contractility. Our results, on one hand, verified that the toxic effects of Dec 602 on gut immunity could last for at least 14 days, and on the other hand, these results predicted other adverse effects of Dec 602, such as muscle dysfunction. Overall, our studies provided insights for the further investigation of Dec 602 and other emerging environmental pollutants.


Assuntos
Hidrocarbonetos Clorados , Interleucina-17 , Linfócitos , Compostos Policíclicos , Animais , Camundongos , Interleucina-17/metabolismo , Imunidade Inata , Camundongos Endogâmicos C57BL , Expressão Gênica
5.
Ecotoxicol Environ Saf ; 247: 114199, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36274317

RESUMO

1,3,6,8-Tetrabromocarbazole (1368-BCZ) is identified as an emerging contaminant that exerts angiogenic effects. Multiple studies indicated there was a positive correlation between angiogenesis and nuclear factor kappa B (NF-κB) activation. While the role of NF-κB in inflammation and apoptosis has been well known, the potential biological effects of 1368-BCZ on NF-κB signaling and related mechanism remain unclear. We, therefore, explored the possible effects of 1368-BCZ on the NF-κB pathway at the gene and protein levels and confirmed that NF-κB activation by 1368-BCZ exposure caused an augmented phosphorylated protein level, induction of NF-κB response element (κBRE)-driven luciferase activity and upregulation of transcriptional level of downstream responsive genes. Although 1368-BCZ did not produce detectable changes in hepatic fibrosis in vivo, it obviously altered the apoptosis in human hepatocellular carcinoma (HepG2) cells. Furthermore, the induction of apoptosis was confirmed by the increased cleaved caspase-3 level. These data revealed the activating effects of 1368-BCZ on NF-κB and its involvement in the underlying mechanisms, providing additional information for toxicology studies of emerging contaminants and introducing a mechanism-based toxicological evaluation of emerging pollutants.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , NF-kappa B/metabolismo , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/patologia , Carbazóis , Apoptose
6.
Environ Pollut ; 313: 120141, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36087894

RESUMO

The homeostasis of gut immunity and microbiota are associated with the health of the gut. Dechlorane 602 (Dec 602) with food web magnification potential has been detected in daily food. People who were orally exposed to Dec 602 may encounter increased risk of health problems in the gut. In order to reveal the influence of short-term exposure of Dec 602 on gut immunity and microbiota, adult female C57BL/6 mice were administered orally with Dec 602 (low/high doses: 1.0/10.0 µg/kg body weight per day) for 7 days. Lymphocytes were examined by flow cytometry. Gut microbiota was measured by 16S rRNA gene sequencing. Results showed that fecal IgA was upregulated after exposure to the high dose of Dec 602, suggesting that there might be inflammation in the gut. Then, changes of immune cells in mesenteric lymph nodes and colonic lamina propria were examined. We found that exposure to the high dose of Dec 602 decreased the percentages of the anti-inflammatory T regulatory cells in mesenteric lymph nodes. In colonic lamina propria, the production of gut protective cytokine interleukin-22 by CD4+ T cells was decreased, and a decreased trend of interleukin-22 production was also observed in type 3 innate lymphoid cells in the high dose group. Furthermore, an altered microbiota composition toward inflammation in the gut was observed after exposure to Dec 602. Additionally, the altered microbiota correlated with changes of immune parameters, suggesting that there were interactions between influenced microbiota and immune parameters after exposure to Dec 602. Taken together, short-term exposure to Dec 602 induced gut immunity and microbiota perturbations, and this might be the mechanisms for Dec 602 to elicit inflammation in the gut.


Assuntos
Microbioma Gastrointestinal , Imunidade Inata , Animais , Citocinas , Feminino , Microbioma Gastrointestinal/genética , Hidrocarbonetos Clorados , Imunoglobulina A , Inflamação , Linfócitos , Camundongos , Camundongos Endogâmicos C57BL , Compostos Policíclicos , RNA Ribossômico 16S/genética
7.
Environ Int ; 168: 107461, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35981476

RESUMO

Tumor cell migration is affected by the aryl hydrocarbon receptor (AhR). However, the systematic molecular mechanisms underlying AhR-mediated migration of human neuroblastoma cells are not fully understood. To address this issue, we performed an integrative analysis of mRNA and microRNA (miR) expression profiles in human neuroblastoma SK-N-SH cells treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a potent agonist of AhR. The cell migration was increased in a time- and concentration- dependent manner, and was blocked by AhR antagonist (CH223191). A total of 4,377 genes were differentially expressed after 24-hour-treatment with 10-10 M TCDD, of which the upregulated genes were significantly enriched in cell migration-related biological pathways. Thirty-four upregulated genes, of which 25 were targeted by 78 differentially expressed miRs, in the axon guidance pathway were experimentally confirmed, and the putative dioxin-responsive elements were present in the promoter regions of most genes (79 %) and miRs (82 %) in this pathway. Furthermore, two promigratory genes (CFL2 and NRP1) induced by TCDD was reversed by blockade of AhR. In conclusion, AhR-mediated mRNA-miR networks in the axon guidance pathway may represent a potential molecular mechanism of dioxin-induced directional migration of human neuroblastoma cells.

8.
Environ Int ; 166: 107394, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35820366

RESUMO

BACKGROUND: Chlorinated flame retardant Dechlorane 602 (Dec 602) has been detected in daily food, indicating that it may pose a risk to intestinal health. The intestinal microenvironment plays an important role in intestinal health. Intestinal microbiota and metabolites are two important factors for maintaining the microenvironment. However, little is known about the effects of Dec 602 on intestinal microbiota and metabolites. OBJECTIVES: We aimed to probe the effects of Dec 602 on the intestine by revealing the changes that Dec 602 caused to the intestinal microbiota and metabolites. METHODS: Adult female C57BL/6 mice were exposed to Dec 602 (low/high doses: 1.0/10.0 µg/kg body weight per day) orally for 7 consecutive days, and sacrificed after 7 days of recovery. The composition of colonic microbiota was measured by 16S rRNA gene sequencing, and the colonic metabolites were determined by LC-ESI-MS/MS. Finally, the effects of Dec 602 on the colon were validated by histopathological analysis. RESULTS: The intestinal microbiota composition was altered toward a pro-inflammatory status after exposure to Dec 602. Dec 602 exposure also up-regulated oxidative metabolites (glutathione disulfide, taurine and retinoic acid) and pro-inflammatory metabolites (prostaglandin E2). On the other hand, antioxidative metabolites (s-adenosylmethionine and 11-cis-retinol) and anti-inflammatory metabolites (alpha-linolenic acid, eicosapentaenoic acid and docosahexaenoic acid) were down-regulated after exposure to Dec 602. Infiltration of lymphocytes in the colonic lamina propria was observed in the mice treated with Dec 602 for 7 days, and it was not recovered after another 7 days without further treatment. CONCLUSION: Dec 602 interfered with the colonic microbiota and metabolome, and exhibited inflammatory features. Histopathological studies confirmed that Dec 602 exposure did induce colonic inflammation.

9.
Environ Pollut ; 306: 119369, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35513195

RESUMO

Electronic waste (e-waste) pollution is of great concern due to the release of hazardous chemicals during the improper e-waste disposal. Many chemicals leached from e-waste were reported to pose estrogenic effects. To date, little is known regarding the occurrence and biological effects of estrogenic chemicals in sediments near an e-waste area. In this study, an effect-directed analysis (EDA) is applied to determine the estrogenic chemicals in sediments of four sites collected from a typical e-waste recycling city in China. Following screening with the ER-CALUX assay, the extract of sample with the most potent effect was subjected in fractionation using reverse phase liquid chromatography. Based on a target analysis for the active fractions, four compounds, including estrone, 17ß-estradiol, 17α-ethinylestradiol and bisphenol A, were identified, and these contributed to 17% of the total toxic effects in the sample. A further nontarget analysis screened four candidates, namely diethylstilbestrol (DES), hexestrol (HES), nandrolone and durabolin, and the total contribution was found to be 48% from the active sample. Specifically, DES and HES were only detected in the active sample and were found to be the primary drivers of estrogenic effects. An examination of the identified chemicals in the four sites indicated that these estrogenic chemicals may originate from e-waste recycling, livestock excretion and domestic waste. These findings uncovered the estrogenic pollutants in sediments from an e-waste area. Considering single endpoint in biological assay is not abundant to screen chemicals with different toxic effects, further EDA studies with multiple endpoints are required to better understand the occurrence of representative or unknown chemicals in e-waste-polluted areas.


Assuntos
Resíduo Eletrônico , Poluentes Químicos da Água , Monitoramento Ambiental/métodos , Estrogênios/análise , Estrona/análise , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
10.
Aquat Toxicol ; 248: 106171, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35504175

RESUMO

Due to the production of large quantities of electronic waste (e-waste), unsafe dismantling has caused serious pollution as well as toxicological impacts on both wildlife and humans. As an important aspect of physiology and health, the wildlife's gut microbiota and its changes induced by pollution have been recruiting increasing concerns. To reveal the gut microbiota-related ecotoxicology induced by e-waste dismantling, this study resolves the gut microbiota profile of Anabas testudineus, a native highly adapted nonmodel fish under the in situ exposure, and reveals whether and how the microbiota was altered. The comparisons are made by collecting samples from different e-waste polluted sites in Guiyu (a town in South China) and a nearby reference (nonpolluted) site. The overall gut microbiota landscape of A. testudineus is similar to that of other reported fishes, with an average of ∼300 OTUs, and constituted by Firmicutes (34.51%), Fusobacteria (29.16%) as the major phyla. Obviously different liver metal burdens/fingerprints were observed between the e-waste and reference sites. Accordingly, although the alpha-diversity (ACE, Simpson, and Shannon) of the gut microbiota did not significantly vary, a detailed exploration of the microbiota constitution indicated significant differences at various taxonomic levels, including a series of significantly different species and biomarkers, and showing site-specific beta-diversity clustering patterns. Interestingly, a few bacteria with greater abundance in the fish gut of e-waste polluted sites were also reported to present in other contaminated environments, have a role in wastewater treatment, be capable to transform metal, etc. Redundancy analysis (RDA) and Pearson association analyses indicated significant associations between Mn and Cetobacterium somerae (Pearson r = 0.3612, p = 0.0008) and between Pb and Clostridium colicanis (Pearson r = 0.5151, p < 0.0001). In summary, pollution from e-waste dismantling may have a role in altering the fish gut microbiota, and this research provides insights for better understanding e-waste ecotoxicology and improving future conservation.


Assuntos
Resíduo Eletrônico , Microbioma Gastrointestinal , Microbiota , Poluentes Químicos da Água , Animais , Peixes , Metais , Poluentes Químicos da Água/toxicidade
11.
Sci Total Environ ; 832: 154762, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35364153

RESUMO

Emerging evidence supports that exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) impacts the gut microbiota and metabolic pathways. TCDD can be transmitted from mother to child; thus, we hypothesize that maternal exposure to TCDD may affect the gut microbiota in mothers and offspring. To acquire in vivo evidence supporting this hypothesis, female C57BL/6 mice were administered with TCDD (0.1 and 10 µg/kg body weight (bw)) during pregnancy and lactation periods, and then changes of colonic microbiota in offspring and mothers were evaluated. High-throughput sequencing of the V4 regions of the 16S rRNA gene was performed. The composition and structure of the colonic microbiota in offspring and mothers were significantly influenced by 10 µg/kg bw TCDD as demonstrated by upregulation of harmful bacteria and downregulation of beneficial bacteria. Paradoxically, pathogenic bacteria and opportunistic pathogens were conversely decreased in the offspring of the low-dose TCDD treatment group. Tryptophan (Trp) metabolism exhibited a noticeable change caused by the alteration of colonic microbiota in offspring after maternal exposure to 10 µg/kg bw TCDD, which showed a linear dependence, demonstrating that pathogens or opportunistic pathogens may accelerate the dysbiosis of Trp metabolism. Trp metabolism dysregulation caused by the changed colonic microbiota may subsequently impact other intestinal segments or even living organisms. Our study provides new evidence indicating a potential influence of early TCDD exposure on the colonic microbiota and metabolism.


Assuntos
Microbiota , Dibenzodioxinas Policloradas , Efeitos Tardios da Exposição Pré-Natal , Animais , Bactérias , Peso Corporal , Feminino , Humanos , Transmissão Vertical de Doenças Infecciosas , Camundongos , Camundongos Endogâmicos C57BL , Mães , Dibenzodioxinas Policloradas/toxicidade , Gravidez , RNA Ribossômico 16S
12.
Ecotoxicol Environ Saf ; 234: 113357, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35272197

RESUMO

Aryl hydrocarbon receptor (AhR) is a ligand-activated receptor to mediates the biological reactions of many environmental and natural compounds, which is highly expressed in glioblastoma. Although it has been reported that AhR agonist emodin can suppress some kinds of tumors, its inhibitory effect on glioblastoma migration and its relationship with AhR remain unclear. Based on the complexity of tumor pathogenesis and the tissue specificity of AhR, we hope can further understand the effect of emodin on glioblastoma and explore its mechanism. We found that the inhibitory effect of emodin on the migration of U87 glioblastoma cells increased with time, and the cell migration ability was inhibited by about 25% after 36 h exposure. In this process, emodin promoted the expression of the tumor suppressor IL24 by activating the AhR signaling pathway. Reducing the expression of AhR or IL24 by interfering RNA could block or relieve the inhibitory effect of emodin on the U87 cells migration, which indicates the inhibition of emodin on the migration of glioblastoma is mediated by the AhR-IL24 axis. Our data proved the AhR-IL24 signal axis is an important pathway for emodin to inhibit the migration of glioblastoma, and the AhR signaling pathway can be used as a key target to research the regulation effect and its mechanism of compounds on glioblastoma migration.

13.
J Hazard Mater ; 432: 128718, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35338935

RESUMO

The dioxin-like substances polyhalogenated carbazoles (PHCZs) may trigger the aryl hydrocarbon receptor (AhR) signaling pathway. Although the crosstalk between AhR and the hypoxia inducible factor-1 (HIF-1) pathways is generally believed to occur, the exact mechanisms of the HIF-1 pathway in PHCZ toxicity have not been determined. We aimed to elucidate the effect of PHCZs on the HIF-1 pathway and its involvement in the regulation of target genes of HIF-1. Herein, we employed human HepG2 cells transiently transfected with a hypoxia response element (HRE) luciferase reporter to identify PHCZs that could influence HIF-1 pathway. We found that exposure to one of the four selected PHCZs, specifically 1,3,6,8-tetrabromo-9 H-carbazole (1368-BCZ), induced a significant enhancement of the activity of HRE activity. In silico data supported 1368-BCZ-induced HIF-1α activity preferentially. Moreover, 1368-BCZ significantly upregulated the expression of HIF-1 target genes, including endothelial growth factor (VEGF) and erythropoietin. Importantly, the stimulated secretion of VEGF by 1368-BCZ promoted the angiogenesis in human umbilical vein endothelial cells. Therefore, the present experimental and computational studies provide new and direct evidence of 1368-BCZ - HIF-1 interaction, which sheds light on the HIF-mediated cardiovascular toxicity and allows a knowledge-based risk assessment of emerging pollutants.


Assuntos
Neovascularização Patológica , Fator A de Crescimento do Endotélio Vascular , Carbazóis/toxicidade , Células Endoteliais da Veia Umbilical Humana , Humanos , Hipóxia , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
14.
J Hazard Mater ; 430: 128458, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35183049

RESUMO

Despite numerous studies on effects of environmental accumulation of nano-pollutants, the influence of nanoparticles on the biological perturbations of coexisting pollutants in the environment remained unknown. The present study aimed at elucidating the perturbations of six environmental nanoparticles on detoxification of dioxin-induced toxicity at cellular level. We discovered that there was no remarkable difference in the cell uptake and intracellular distributions of these six nanoparticles. However, they have different effects on the detoxification of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD). Multi-walled carbon nanotubes (MWCNTs) inhibited the translocation of aryl hydrocarbon receptor (AhR) from cytosol to the nucleus, leading to the downregulation of cytochrome P450 family 1 subfamily A member 1 (CYP1A1) and inhibition of detoxification function. These findings demonstrate that MWCNTs can impact the potential detoxification of dioxin-induced toxicity through modulating AhR signaling pathway. Co-exposures to MWCNTs and dioxin may cause even more toxicity than single exposure to dioxin or MWCNTs alone.


Assuntos
Dioxinas , Nanotubos de Carbono , Dibenzodioxinas Policloradas , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Dioxinas/toxicidade , Nanotubos de Carbono/toxicidade , Dibenzodioxinas Policloradas/toxicidade , Receptores de Hidrocarboneto Arílico
15.
J Hazard Mater ; 426: 128084, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-34952507

RESUMO

The aryl hydrocarbon receptor (AHR) is a member of the basic helix-loop-helix/Per-ARNT-Sim (bHLH-PAS) family of transcription factors and has broad biological functions. Early after the identification of the AHR, most studies focused on its roles in regulating the expression of drug-metabolizing enzymes and mediating the toxicity of dioxins and dioxin-like compounds (DLCs). Currently, more diverse functions of AHR have been identified, indicating that AHR is not just a dioxin receptor. Dioxins and DLCs occur ubiquitously and have diverse health/ecological risks. Additional research is required to identify both shared and compound-specific mechanisms, especially for emerging DLCs such as polyhalogenated carbazoles (PHCZs), polychlorinated diphenyl sulfides (PCDPSs), and others, of which only a few investigations have been performed at present. Many of the toxic effects of emerging DLCs were observed to be predominantly mediated by the AHR because of their structural similarity as dioxins, and the in vitro TCDD-relative potencies of certain emerging DLC congeners are comparable to or even greater than the WHO-TEFs of OctaCDD, OctaCDF, and most coplanar PCBs. Due to the close relationship between AHR biology and environmental science, this review begins by providing novel insights into AHR signaling (canonical and non-canonical), AHR's biochemical properties (AHR structure, AHR-ligand interaction, AHR-DNA binding), and the variations during AHR transactivation. Then, AHR ligand classification and the corresponding mechanisms are discussed, especially the shared and compound-specific, AHR-mediated effects and mechanisms of emerging DLCs. Accordingly, a series of in vivo and in vitro toxicity evaluation methods based on the AHR signaling pathway are reviewed. In light of current advances, future research on traditional and emerging DLCs will enhance our understanding of their mechanisms, toxicity, potency, and ecological impacts.


Assuntos
Dioxinas , Bifenilos Policlorados , Animais , Carbazóis , Dioxinas/toxicidade , Ratos , Ratos Sprague-Dawley , Receptores de Hidrocarboneto Arílico/genética
16.
Front Mol Neurosci ; 14: 765712, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34955744

RESUMO

Glioblastoma is the most frequent and aggressive primary astrocytoma in adults. The high migration ability of the tumor cells is an important reason for the high recurrence rate and poor prognosis of glioblastoma. Recently, emerging evidence has shown that the migration ability of glioblastoma cells was inhibited upon the activation of aryl hydrocarbon receptor (AhR), suggesting potential anti-tumor effects of AhR agonists. Rutaecarpine is a natural compound with potential tumor therapeutic effects which can possibly bind to AhR. However, its effect on the migration of glioblastoma is unclear. Therefore, we aim to explore the effects of rutaecarpine on the migration of human glioblastoma cells U87 and the involvement of the AhR signaling pathway. The results showed that: (i) compared with other structural related alkaloids, like evodiamine and dehydroevodiamine, rutaecarpine was a more potent AhR activator, and has a stronger inhibitory effect on the glioblastoma cell migration; (ii) rutaecarpine decreased the migration ability of U87 cells in an AhR-dependent manner; (iii) AhR mediated the expression of a tumor suppressor interleukin 24 (IL24) induced by rutaecarpine, and AhR-IL24 axis was involved in the anti-migratory effects of rutaecarpine on the glioblastoma. Besides IL24, other candidates AhR downstream genes both associated with cancer and migration were proposed to participate in the migration regulation of rutaecarpine by RNA-Seq and bioinformatic analysis. These data indicate that rutaecarpine is a naturally-derived AhR agonist that could inhibit the migration of U87 human glioblastoma cells mostly via the AhR-IL24 axis.

18.
Sci Total Environ ; 752: 141784, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-32889265

RESUMO

Emerging evidence suggests that perinatal dioxin exposure affects neurodevelopment and impairs multiple brain functions, including cognitive, language, learning and emotion, in the offspring. However, the impacts of gestational and lactational exposure to dioxin on behavior and related molecular events are still not fully understood. In this study, female C57BL/6J mice were orally administered three doses of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD) (0.1 or 10 µg/kg body weight (bw)) during the pregnancy and lactation periods. The locomotion, exploration and anxiety-related behaviors were examined by an open field test of the young adult female offspring at postnatal day 68. We found that the maternal TCDD exposure, particularly at a low dose, increased movement ability, novelty-exploration and certain anxiety-related behaviors in the offspring. Such hyperactivity-like behaviors were accompanied by the upregulation of certain genes associated with cholinergic neurotransmission or synaptogenesis in the offspring brain. In accordance with the potential enhancement of cholinergic neurotransmission due to the gene upregulations, the enzymatic activity of acetylcholinesterase was decreased, which might lead to excess acetylcholine and consequent hyper-excitation at the synapses. Thus, we found that gestational and lactational TCDD exposure at low dose caused hyperactivity-like behaviors in young adult female offspring and speculated the enhancement of cholinergic neurotransmission and synaptogenesis as potential molecular events underlying the neurobehavioral effects.


Assuntos
Dibenzodioxinas Policloradas , Efeitos Tardios da Exposição Pré-Natal , Animais , Feminino , Humanos , Lactação , Exposição Materna/efeitos adversos , Camundongos , Camundongos Endogâmicos C57BL , Dibenzodioxinas Policloradas/toxicidade , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente
19.
J Neurochem ; 158(6): 1254-1262, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33278027

RESUMO

Acetylcholinesterase (AChE, EC 3.1.1.7) plays important roles in cholinergic neurotransmission and has been widely recognized as a biomarker for monitoring pollution by organophosphate (OP) and carbamate pesticides. Dioxin is an emerging environmental AChE disruptor and is a typical persistent organic pollutant with multiple toxic effects on the nervous system. Growing evidence has shown that there is a significant link between dioxin exposure and neurodegenerative diseases and neurodevelopmental disorders, most of which involve AChE and cholinergic dysfunctions. Therefore, an in-depth understanding of the effects of dioxin on AChE and the related mechanisms of action might help to shed light on the molecular bases of dioxin impacts on the nervous system. In the past decade, the effects of dioxins on AChE have been revealed in cultured cells of different origins and in rodent animal models. Unlike OP and carbamate pesticides, dioxin-induced AChE disturbance is not due to direct inhibition of enzymatic activity; instead, dioxin causes alterations of AChE expression in certain models. As a widely accepted mechanism for most dioxin effects, the aryl hydrocarbon receptor (AhR)-dependent pathway has become a research focus in studies on the mechanism of action of dioxin-induced AChE dysregulation. In this mini-review, the effects of dioxin on AChE and the diverse roles of the AhR pathway in AChE regulation are summarized. Additionally, the involvement of AhR in AChE regulation during different neurodevelopmental processes is discussed. These AhR-related findings might also provide new insight into AChE regulation triggered by diverse xenobiotics capable of interacting with AhR.


Assuntos
Acetilcolinesterase/metabolismo , Dioxinas/metabolismo , Neurônios/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Células Cultivadas , Dioxinas/toxicidade , Humanos , Doenças Neurodegenerativas/induzido quimicamente , Doenças Neurodegenerativas/metabolismo , Neurônios/efeitos dos fármacos
20.
Nanoscale ; 12(36): 18600-18605, 2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-32914812

RESUMO

Graphene family nanomaterials (GFNs) have shown great potential for biological and environmental applications; however, their future use has been debated due to their reported potential neurotoxicity. Moreover, the effects of surface functionalization on their biological end points are largely unknown. Here, we compared the effects of reduced graphene oxide (RGO), and carboxylated (G-COOH), hydroxylated (G-OH) and aminated (G-NH2) graphene nanosheets on human neuroblastoma cells (SK-N-SH). All GFNs inhibited cellular growth at concentrations of 0.1-10 mg L-1 after 24 h exposure. The toxicity was attenuated over longer exposure times, with the exception of G-NH2. Although the overall acute toxicity followed the order: G-OH ≈ G-COOH > RGO > G-NH2, G-NH2 induced more persistent toxicity and more metabolic disturbance compared to the other GFNs, with lipid and carbohydrate metabolism being the most affected. The potential for physical disruption of the lipid membrane and oxidative damage induced by GFNs varied with different functionalization, which accounts for the observed differences in neurotoxicity. This study provides significant insights into the neurological effects of GFNs, and suggests that G-NH2 is not as safe as reported in many previous studies. The neurological effect of GFNs over longer term exposure should be considered in future studies.


Assuntos
Grafite , Nanoestruturas , Grafite/toxicidade , Humanos , Nanoestruturas/toxicidade , Estresse Oxidativo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...