Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(24): 15888-15897, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38842501

RESUMO

Distinguished from traditional physical unclonable functions (PUFs), optical PUFs derive their encoded information from the optical properties of materials, offering distinct advantages, including solution processability, material versatility, and tunable luminescence performance. However, existing research on optical PUFs has predominantly centered on visible photoluminescence, while advanced optical PUFs based on higher-level covert light remain unexplored. In this study, we present optical PUFs based on the utilization of the covert light of near-infrared circularly polarized luminescence (NIR-CPL). This interesting property is achieved by incorporating Yb-doped metal halide perovskite nanocrystals (Yb-PeNCs) possessing NIR emission property into chiral imprinted photonic (CIP) films. By employing a solvent immersion method, we successfully integrated Yb-PeNCs into these CIP films, thereby creating an optically unclonable surface. The resulting NIR-CPL emission adds a layer of advanced security to the optical PUF systems. These findings underscore the potential of solution-processable chiral films to play a pivotal role in advancing the next generation of PUFs.

2.
Adv Mater ; : e2401869, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641342

RESUMO

Smart windows with radiative heat management capability using the sun and outer space as zero-energy thermodynamic resources have gained prominence, demonstrating a minimum carbon footprint. However, realizing on-demand thermal management throughout all seasons while reducing fossil energy consumption remains a formidable challenge. Herein, an energy-efficient smart window that enables actively tunable passive radiative cooling (PRC) and multimode heating regulation is demonstrated by integrating the emission-enhanced polymer-dispersed liquid crystal (SiO2@PRC PDLC) film and a low-emission layer deposited with carbon nanotubes. Specifically, this device can achieve a temperature close to the chamber interior ambient under solar irradiance of 700 W m-2, as well as a temperature drop of 2.3 °C at sunlight of 500 W m-2, whose multistage PRC efficiency can be rapidly adjusted by a moderate voltage. Meanwhile, synchronous cooperation of passive radiative heating (PRH), solar heating (SH), and electric heating (EH) endows this smart window with the capability to handle complicated heating situations during cold weather. Energy simulation reveals the substantial superiority of this device in energy savings compared with single-layer SiO2@PRC PDLC, normal glass, and commercial low-E glass when applied in different climate zones. This work provides a feasible pathway for year-round thermal management, presenting a huge potential in energy-saving applications.

3.
Chemistry ; 29(32): e202300498, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-36988020

RESUMO

Key Lab of Environment-friendly Chemistry and Circularly polarized luminescent (CPL) materials with multitudinous inherent advantages shows extensive application. In this work, we prepare a kind of highly efficient wavelength-tunable CPL free-standing films by responsive chiral aggregation-induced emission mesogen. Firstly, the pyridine-functionalized tetraphenylethene monomer (MPy) is designed and synthesized. Then, the different ration of the monomer MPy mixed with the liquid crystal (LC) reactive monomer (LC242) to fabricate a free-standing film by photopolymerization. The obtained film presents efficient CPL with a constant luminescence asymmetry factor (glum ) of +0.75, as well as sensitive wavelength tunability. Finally, this wavelength-tunable CPL film with both fluorescence and CPL modes is successfully applied in anti-counterfeiting and information encryption. This work provides a simple way to construct CPL apparatus with adjustable luminescence wavelength and high glum .


Assuntos
Cristais Líquidos , Luminescência , Fluorescência
4.
Chirality ; 35(6): 346-354, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36792058

RESUMO

Circularly polarized luminescence (CPL) has been widely demonstrated that the circular polarization in excited state can be significantly amplified through the triplet-triplet annihilation-based upconversion (TTA-UC) luminescence process in various chiral nano-assemblies. However, constructing such an upconverted circularly polarized luminescence (UC-CPL) system in the aqueous phase remains a challenge. In this work, a kind of amphiphilic chiral cationic gemini surfactant is utilized to construct chiral spherical micelle in the aqueous phase, whose internal chiral cavity can provide a hydrophobic and deoxygenated environment for air-sensitive TTA-UC system. In addition, due to the co-assembly process between the emitters and chiral micelles, achiral emitters of upconversion pairs exhibit induced chiroptical properties. More importantly, the luminescence dissymmetry factor (glum ) can be amplified by one order of magnitude through TTA-UC process. This work provides an effective and useful strategy for realizing UC-CPL in aqueous phase.

5.
ACS Appl Mater Interfaces ; 13(34): 41131-41139, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34412468

RESUMO

Organic persistent luminescent materials have attracted special attention due to their significant applications in optoelectronics, sensors, and security technology areas. In this work, a series of organic compounds (1-4) with twisted electron donor-acceptor structures are successfully designed and synthesized, and then the resultant compounds are dissolved in methyl methacrylate (MMA), and afterward, in situ polymerization realizes single-molecular organic room-temperature phosphorescent (RTP) materials (P1-P4). All RTP materials show long lifetime, especially P2 exhibits ultralong lifetime of 1.51 s. When the compounds are grown into single crystals, multicolor-tunable afterglow is obtained at different delay times due to the dual emission of phosphorescence and delayed fluorescence, which is promising to be applied in high-level anticounterfeiting.

6.
ACS Appl Mater Interfaces ; 13(22): 26522-26532, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34057832

RESUMO

Traditional luminescent liquid crystals (LLCs) suffer from fluorescence quenching caused by aggregation, which greatly limits their further application. In this work, a kind of novel LLCs (named carbonized polymer dot liquid crystals (CPD-LCs)) are designed and successfully synthesized through grafting the rod-shaped liquid crystal (LC) molecules of 4'-cyano-4-(4″-bromohexyloxy) biphenyl on the surface of CPDs. The peripheral LC molecules not only increase the distance between different CPDs to prevent them from aggregating and reduce intermolecular energy resonance transfer but also make this LLC have an ordered arrangement. Thus, the obtained CPD-LCs show good LC property and excellent high luminous efficiency with an absolute photoluminescence quantum yield of 14.52% in the aggregated state. Furthermore, this kind of CPD-LC is used to fabricate linearly polarized devices. The resultant linearly polarized dichroic ratio (N) and polarization ratio (ρ) are 2.59 and 0.44, respectively. Clearly, this type of CPD-LC shows promising applications for optical devices.

7.
ACS Appl Mater Interfaces ; 11(51): 48393-48401, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31786930

RESUMO

A liquid crystalline elastomer (LCE) as a kind of stimuli-responsive materials, which can be fabricated to present the three-dimensional (3D) change in shape, shows a wide range of applications. Herein, we propose a simple and robust way to prepare a 3D shape-change actuator based on gradient cross-linking of the vertically aligned monodomain of liquid crystals (LCs). First, gold nanoparticles grafted by liquid crystalline polymers (LCPs) are used to induce the homeotropic orientation of the LC monomer and cross-linkers. Then, photopolymerization under UV irradiation is carried out, which can result in the LCE film with a cross-link gradient. Different from the typical LCEs with homogenous alignment that usually show the shape change of extension/contraction, the obtained vertically aligned LCE film exhibits excellent bendability under a thermal stimulus. The nanoindentation experiment demonstrates that the deformation of LCE films comes from the difference in Young's modulus on two sides of the thin film. Simply scissoring the thin film can prepare the samples with different bending angles under the fixed length. Moreover, using a photomask to pattern the film during photopolymerization can realize the complex 3D deformation, such as bend, fold, and buckling. Further, the patterned LCE film doped with multiwalled carbon nanotubes modified by LCPs (CNT-PDB) can act as a light-fueled microwalker with fast crawl behavior.

8.
ACS Appl Mater Interfaces ; 11(40): 37026-37034, 2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31515990

RESUMO

An azobenzene side chain liquid crystalline copolymer (MAzo-co-GMA) is successfully synthesized through copolymerizing the monomer 6-(4-((4-butylphenyl)diazenyl)phenoxy)hexyl methacrylate (MAzo) with glycidyl methacrylate (GMA). The obtained MAzo-co-GMA copolymer can form stabilized polymer brush on the surface after thermal annealing. The obtained polymer brush not only induces the alignment of liquid crystals but also shows a photothermal effect under UV light irradiation due to the azobenzene side group. On basis of these results, the LC cell with this polymer brush as the substrate is further used to fabricate the polymer-stabilized liquid crystal (PSLC) smart window. The resultant PSLC smart window shows the transparent state because the homeotropic alignment in the SmA* phase of PSLC is induced by the polymer brush on the surface of the LC cell. The opaque state can be achieved in the scattering N* phase by UV light irradiation or heating. The response time of the PSLC smart window can be regulated by adjusting the concentration of MAzo-co-GMA copolymer brush and the intensity of UV light. This kind of PSLC smart window with both thermal and UV response shows good reversibility and stability, which endows enormous promising applications in energy-saving devices.

9.
ACS Appl Mater Interfaces ; 11(16): 15051-15059, 2019 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-30942068

RESUMO

Luminescent liquid crystalline polymers (LLCPs) show extensive application potentials, such as liquid crystal displays and circularly polarized luminescence. In this work, we employ a hydrogen-bonding strategy different from the traditional covalent-bonding method to fabricate LLCPs. First, the acceptor and donor of hydrogen bonding, (4,4'-dibutanoxy tetraphenylethylene)-1-pyridine (PTPEC4) and poly(2-vinyl terephthalic acid) (PPA), respectively, are successfully synthesized. Then, mixtures with different molar ratios ( x's) of PTPEC4 to PPA are used to prepare a series of LLCPs [denoted as PPA(PTPEC4) x]. The resultant LLCPs show a smectic A phase ( x ≥ 0.8), a columnar nematic phase (0.6 ≤ x ≤ 0.05), and an amorphous state ( x = 0.025), depending on the x value. Meanwhile, all polymers exhibit typical aggregation-induced emission behavior. More interestingly, with the variation of the PTPEC4 content, the series of LLCPs show different colors, that is, the emission peak red shifts from 510 nm ( x = 1.0) to 551 nm ( x = 0.025). Furthermore, because of the reversible protonation effect of the N atom of pyridine in PTPEC4 by the strong proton acid, PPA(PTPEC4) x shows reversible color transformation. This work provides a new method to construct LLCPs with different emission colors and reversible color transformation.

10.
Soft Matter ; 14(37): 7569-7577, 2018 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-30065982

RESUMO

Controlling the orientation of liquid crystal (LC) molecules towards contacting surfaces is a crucial requirement for the development of LC displays and passive electro-optical devices. Up to now, research has been focused on photo-responses of a LC azobenzene polymer system to obtain either planar or homeotropic orientation of LCs. It remains a challenge, however, to tune the polar angle of LC molecules on the solid surface and gain more insights about the polymer chain conformation extending in LC medium. Here, we deposit a liquid crystalline side chain polymer brush, poly(6-(4-methoxy-azobenzene-4'-oxy)hexyl methacrylate) (PMMAZO), onto the solid surface with film thickness varying between ∼3 nm and 13 nm; therefore, the grafting density of the brush layer ranges from 0.0219 to 0.0924 chains per nm2. When LCs are confined in hybrid cells with a top surface eliciting uniform homeotropic anchoring and a bottom surface covered by the PMMAZO brush, the out-of-plane polar angle of 4-pentyl-4'-cyanobiphenyl (5CB) on the brush layer gradually changes from ∼0° to ∼62° by simply increasing the grafting brush density. The surface forces apparatus (SFA) measurement is used to determine 5CB as a good solvent for the PMMAZO brush and understand the relationship between the chain conformation in 5CB and the anchoring behavior of LC molecules on the polymer brush layer. For high grafting density, the polymer chain in 5CB extends significantly away from the substrate, making the side chain mesogens on average almost parallel to the substrate; for the low-density case, the main chain extends in the narrow region around the surface for aligning the mesogens perpendicular to the substrate.

11.
ACS Appl Mater Interfaces ; 10(32): 27269-27277, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-30028118

RESUMO

The gold nanoparticles highly grafted by a liquid crystalline polymer (LCP) with azobenzene mesogens as the side chain (denoted as Au@TE-PAzo NPs) are successfully designed and synthesized by the two-phase Brust-Schiffrin method. The chemical structures of the monomer and polymer ligands have been confirmed by nuclear magnetic resonance, and the molecular weight of the polymer is determined by gel permeation chromatography. The combined analysis of transmission electron microscopy and thermogravimetric analysis shows that the size of the nanoparticles is 2.5(±0.4) nm and the content of the gold in the Au@TE-PAzo NPs is ca. 17.58%. The resultant Au@TE-PAzo NPs can well disperse in the nematic LC of 5CB. The well-dispersed mixture with appropriate doping concentrations can automatically form a perfect homeotropic alignment in the LC cell. The homeotropic alignment is attributed to the brush formed by Au@TE-PAzo NPs on the substrate, wherein the Au@TE-PAzo NPs gradually diffuse onto the substrate from the mixture. On the contrary, the pure side chain LCPs cannot yield vertical alignment of 5CB, which indicates that the alignment of 5CB is ascribed to the synergistic interaction of the nanoparticles and the grafted LCPs. Moreover, Au@TE-PAzo NPs show excellent film-forming property on account of their periphery of high densely grafted LCPs, which can form uniform thin film by spin-coating. The resultant thin film also can prompt the automatical vertical alignment of the nematic 5CB. Further, upon alternative irradiation of UV and visible light, the alignment of 5CB reversibly switches between vertical and random orientation because of the trans-cis photoisomerization of the azobenzene group on the periphery of Au@TE-PAzo NPs. These experimental results suggest that this kind of nanoparticles can be potentially applied in constructing the remote-controllable optical devices.

12.
ACS Nano ; 11(6): 6492-6501, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28605183

RESUMO

In exploiting topological defects of liquid crystals as the targeting sites for trapping colloidal objects, previous work has relied on topographic features with uniform anchoring to create defects, achieving limited density and spacing of particles. We report a generalizable strategy to create topological defects on chemically patterned surfaces to assemble particles in precisely defined locations with a tunable interparticle distance at nanoscale dimensions. Informed by experimental observations and numerical simulations that indicate that liquid crystals, confined between a homeotropic-anchoring surface and a surface with lithographically defined planar-anchoring stripes in a homeotropic-anchoring background, display splay-bend deformation, we successfully create pairs of defects and subsequently trap particles with controlled spacing by designing patterns of intersecting stripes aligned at 45° with homeotropic-anchoring gaps at the intersections. Application of electric fields allows for dynamic control of trapped particles. The tunability, responsiveness, and adaptability of this platform provide the opportunities for assembly of colloidal structures toward functional materials.

13.
Soft Matter ; 12(41): 8595-8605, 2016 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-27722676

RESUMO

The morphology and through-film optical properties of nematic liquid crystals (LCs) confined between two surfaces may be engineered to create switches that respond to external electric fields, thereby enabling applications in optoelectronics that require fast responses and low power. Interfacial properties between the confining surfaces and the LC play a central role in device design and performance. Here we investigate the morphology of LCs confined in hybrid cells with a top surface that exhibits uniform homeotropic anchoring and a bottom surface that is chemically patterned with sub-micron and micron- wide planar anchoring stripes in a background of homeotropic anchoring. In a departure from past work, we first investigate isolated stripes, as opposed to dense periodic arrays of stripes, thereby allowing for an in-depth interpretation of the effects of patterning on LC morphology. We observe three LC morphologies and sharp transitions between them as a function of stripe width in the submicron and micron regimes. Numerical simulations and theory help explain the roles of anchoring energy, elastic deformation, entropy, pattern geometry, and coherence length of the LC in the experimentally observed behavior. The knowledge and models developed from an analysis of results generated on isolated features are then used to design dense patterned substrates for high-contrast and efficient orientational switching of LCs in response to applied fields.

14.
Chem Commun (Camb) ; 52(67): 10257-60, 2016 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-27465691

RESUMO

Liquid crystalline elastomers (LCEs) using multivalent hydrogen bonds as cross-linkers were successfully fabricated, which showed both self-healing and photoinduced-deformable properties. More interestingly, this LCE could be readily molded into different shapes through a versatile and efficient procedure, and the fibrous and filmy samples showed different photoinduced-deformable behavior originating from the difference in molecular orientations.

15.
J Am Chem Soc ; 132(23): 8071-80, 2010 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-20491482

RESUMO

The liquid-crystalline (LC) phase structures and transitions of a combined main-chain/side-chain LC polymer (MCSCLCP) 1 obtained from radical polymerization of a 2-vinylterephthalate, poly(2,5-bis{[6-(4-butoxy-4'-oxybiphenyl) hexyl]oxycarbonyl}styrene), were studied using differential scanning calorimetry, one- and two-dimensional wide-angle X-ray diffraction (1D and 2D WAXD), and polarized light microscopy. We have found that 1 with sufficiently high molecular weight can self-assemble into a hierarchical structure with double orderings on the nanometer and subnanometer scales at low temperatures. The main chains of 1, which are rodlike as a result of the "jacketing" effect generated by the central rigid portion of the side chains laterally attached to every second carbon atom along the polyethylene backbone, form a 2D centered rectangular scaffold. The biphenyl-containing side chains fill the space between the main chains, forming a smectic E (SmE)-like structure with the side-chain axis perpendicular to that of the main chain. This biaxial orientation of 1 was confirmed by our 2D WAXD experiments through three orthogonal directions. The main-chain scaffold remains when the SmE-like packing is melted at elevated temperatures. Further heating leads to a normal smectic A (SmA) structure followed by the isotropic state. We found that when an external electric field was applied, the main-chain scaffold greatly inhibited the motion of the biphenyls. While the main chains gain a sufficiently high mobility in the SmA phase, macroscopic orientation of 1 can be achieved using a rather weak electric field, implying that the main and side chains with orthogonal directions can move cooperatively. Our work demonstrates that when two separate components, one offering the "jacketing" effect to the normally flexible backbone and the other with mesogens that form surrounding LC phases, are introduced simultaneously into the side chains, the polymer obtained can be described as an MCSCLCP with a fascinating hierarchically ordered structure.


Assuntos
Cristais Líquidos/química , Ácidos Ftálicos/química , Polímeros/química , Poliestirenos/química , Compostos de Bifenilo/química , Eletricidade , Peso Molecular , Transição de Fase , Temperatura de Transição , Difração de Raios X
16.
Chem Commun (Camb) ; 46(18): 3155-7, 2010 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-20424758

RESUMO

Two novel semirigid smart polymers based on mesogen-jacketed liquid crystal polymers were successfully synthesized via free radical polymerization, which showed both characteristic liquid crystal properties of mesogen-jacketed liquid crystal polymers and remarkably reversible thermoresponsive phase transition behaviors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...