Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Neurol ; 379: 114853, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38866102

RESUMO

The activation of glial cells is intimately associated with the pathophysiology of neuroinflammation and white matter injury (WMI) during both acute and chronic phases following subarachnoid hemorrhage (SAH). The complement C3a receptor (C3aR) has a dual role in modulating inflammation and contributes to neurodevelopment, neuroplasticity, and neurodegeneration. However, its impact on WMI in the context of SAH remains unclear. In this study, 175 male C57BL/6J mice underwent SAH through endovascular perforation. Oxyhemoglobin (oxy-Hb) was employed to simulate SAH in vitro. A suite of techniques, including immunohistochemistry, transcriptomic sequencing, and a range of molecular biotechnologies, were utilized to evaluate the activation of the C3-C3aR pathway on microglial polarization and WMI. Results revealed that post-SAH abnormal activation of microglia was accompanied by upregulation of complement C3 and C3aR. The inhibition of C3aR decreased abnormal microglial activation, attenuated neuroinflammation, and ameliorated WMI and cognitive deficits following SAH. RNA-Seq indicated that C3aR inhibition downregulated several immune and inflammatory pathways and mitigated cellular injury by reducing p53-induced death domain protein 1 (Pidd1) and Protein kinase RNA-like ER kinase (Perk) expression, two factors mainly function in sensing and responding to cellular stress and endoplasmic reticulum (ER) stress. The deleterious effects of the C3-C3aR axis in the context of SAH may be related to endoplasmic reticulum (ER) stress-dependent cellular injury and inflammasome formation. Agonists of Perk can exacerbate the cellular injury and neuroinflammation, which was attenuated by C3aR inhibition after SAH. Additionally, intranasal administration of C3a during the subacute phase of SAH was found to decrease astrocyte reactivity and alleviate cognitive deficits post-SAH. This research deepens our understanding of the complex pathophysiology of WMI following SAH and underscores the therapeutic potential of C3a treatment in promoting white matter repair and enhancing functional recovery prognosis. These insights pave the way for future clinical application of C3a-based therapies, promising significant benefits in the treatment of SAH and its related complications.

2.
Neurobiol Dis ; 199: 106583, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38942324

RESUMO

After ischemic stroke (IS), secondary injury is intimately linked to endoplasmic reticulum (ER) stress and body-brain crosstalk. Nonetheless, the underlying mechanism systemic immune disorder mediated ER stress in human IS remains unknown. In this study, 32 candidate ER stress-related genes (ERSRGs) were identified by overlapping MSigDB ER stress pathway genes and DEGs. Three Key ERSRGs (ATF6, DDIT3 and ERP29) were identified using LASSO, random forest, and SVM-RFE. IS patients with different ERSRGs profile were clustered into two groups using consensus clustering and the difference between 2 group was further explored by GSVA. Through immune cell infiltration deconvolution analysis, and middle cerebral artery occlusion (MCAO) mouse scRNA analysis, we found that the expression of 3 key ERSRGs were closely related with peripheral macrophage cell ER stress in IS and this was further confirmed by RT-qPCR experiment. These ERS genes might be helpful to further accurately regulate the central nervous system and systemic immune response through ER stress and have potential application value in clinical practice in IS.

3.
Stem Cells Transl Med ; 11(9): 912-926, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-35972332

RESUMO

The application of umbilical cord blood (UCB) as an important source of hematopoietic stem and progenitor cells (HSPCs) for hematopoietic reconstitution in the clinical context has steadily grown worldwide in the past 30 years. UCB has advantages that include rapid availability of donors, less strict HLA-matching demands, and low rates of graft-versus-host disease (GVHD) versus bone marrow (BM) and mobilized peripheral blood (PB). However, the limited number of HSPCs within a single UCB unit often leads to delayed hematopoietic engraftment, increased risk of transplant-related infection and mortality, and proneness to graft failure, thus hindering wide clinical application. Many strategies have been developed to improve UCB engraftment, most of which are based on 2 approaches: increasing the HSPC number ex vivo before transplantation and enhancing HSPC homing to the recipient BM niche after transplantation. Recently, several methods have shown promising progress in UCB engraftment improvement. Here, we review the current situations of UCB manipulation in preclinical and clinical settings and discuss challenges and future directions.


Assuntos
Transplante de Células-Tronco de Sangue do Cordão Umbilical , Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Transplante de Células-Tronco de Sangue do Cordão Umbilical/efeitos adversos , Sangue Fetal , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/terapia , Células-Tronco Hematopoéticas , Humanos
4.
Vaccines (Basel) ; 10(7)2022 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-35891267

RESUMO

Multiple severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines have been approved for clinical use. SARS-CoV-2 neutralizing antibody titers after immunization are widely used as an evaluation indicator, and the roles of cellular immune responses in the protective efficacy of vaccines are rarely mentioned. However, therapeutic monoclonal neutralizing antibodies have shown limited efficacy in improving the outcomes of hospitalized patients with coronavirus disease 2019 (COVID-19), suggesting a passive role of cellular immunity in SARS-CoV-2 vaccines. The synergistic effect of virus-specific humoral and cellular immune responses helps the host to fight against viral infection. In fact, it has been observed that the early appearance of specific T-cell responses is strongly correlated with mild symptoms of COVID-19 patients and that individuals with pre-existing SARS-CoV-2 nonstructural-protein-specific T cells are more resistant to SARS-CoV-2 infection. These findings suggest the important contribution of the cellular immune response to the fight against SARS-CoV-2 infection and severe COVID-19. Nowadays, new SARS-CoV-2 variants that can escape from the neutralization of antibodies are rapidly increasing. However, the epitopes of these variants recognized by T cells are largely preserved. Paying more attention to cellular immune responses may provide new instructions for designing effective vaccines for the prevention of severe disease induced by the break-through infection of new variants and the sequelae caused by virus latency. In this review, we deliberate on the role of cellular immunity against COVID-19 and summarize recent advances in the development of SARS-CoV-2 vaccines and the immune responses induced by vaccines to improve the design of new vaccines and immunization strategies.

5.
Stem Cells Transl Med ; 11(6): 597-603, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35427423

RESUMO

The widespread clinical application of cord blood (CB) for hematopoietic stem cell (HSC) transplantation is limited mainly by the inadequate number of hematopoietic stem and progenitor cells (HSPCs) in single CB units, which results in unsuccessful or delayed engraftment in recipients. The identification of agents to promote CB HSPC engraftment has significant therapeutic value. Here, we found that transient inhibition of the JNK pathway increased the HSC frequency in CB CD34+ cells to 13.46-fold. Mechanistic studies showed that inhibition of the JNK pathway upregulated the expression of quiescence-associated and stemness genes in HSCs, preventing HSCs from entering the cell cycle, increasing glucose uptake and accumulating reactive oxygen species (ROS). Importantly, transient inhibition of the JNK pathway during CB CD34+ cell collection also enhanced long-term HSC (LT-HSC) recovery and engraftment efficiency. Collectively, these findings suggest that transient inhibition of the JNK pathway could promote a quiescent state in HSCs by preventing cell cycle entry and metabolic activation, thus enhancing the HSC number and engraftment potential. Together, these findings improve the understanding of the regulatory mechanisms governing HSC quiescence and stemness and have the potential to improve HSC collection and transplantation.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Sistema de Sinalização das MAP Quinases , Sangue Fetal , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/metabolismo , Humanos , Transdução de Sinais/genética
6.
Front Oncol ; 11: 781029, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34926296

RESUMO

BACKGROUND: Postoperative adjuvant transcatheter arterial chemoembolization (TACE) following curative hepatectomy has been reported to improve the clinical outcomes of hepatocellular carcinoma (HCC) patients with microvascular invasion (MVI), but more endeavors are required to achieve greater clinical benefit. Central memory T-cell (Tcm) self-transfusion has shown superior antitumor activity in several preclinical studies; however, clinical studies are rare. The aim of this study was to evaluate the clinical benefit and safety of combination treatment with Tcm self-transfusion and TACE as adjuvant treatment in HCC patients with MVI after curative hepatectomy. METHODS: From October 2016 to September 2018, primary HCC patients with histologically confirmed MVI who underwent curative hepatectomy at the Cancer Hospital of the Chinese Academy of Medical Sciences were recruited for this study. The patients were divided into a Tcm group (combined Tcm self-transfusion with TACE treatment) or a control group (TACE treatment alone) according to their willingness. The recurrence-free survival (RFS), quality-of-life (QOL) score, and adverse events of each patient were recorded within 2 years. RESULTS: A total of 52 patients were enrolled, and 48 were eligible for the final data analysis. The median follow-up time was 20.5 months (95% CI: 17.05-22.55 months). The median RFS time was 9.5 months in the control group; the cutoff date was not reached in the Tcm group (when the follow-up duration was 12 months, p = 0.049, HR = 0.40; 95% CI: 0.16-0.99). Compared with the control group, 1- and 2-year RFS rates were higher in the Tcm group (72.0% vs. 46.4% and 58.18% vs. 39.14%, respectively). Multivariate analysis did not indicate that Tcm treatment was an independent prognostic factor associated with HCC recurrence (p = 0.107, HR = 2.312; 95% CI: 0.835-6.400), which might be due to the small sample size of this study. Nevertheless, Tcm treatment effectively improved a reduced QOL due to HCC and liver function injury. Finally, the safety profile of Tcm treatment in this study was good, without any serious adverse events. CONCLUSIONS: This pilot study showed that Tcm self-transfusion combined with TACE treatment might be a beneficial adjuvant therapy with good safety for primary HCC patients with MVI after curative hepatectomy. TRIAL REGISTRATION NUMBER: NCT03575806.

7.
Stem Cell Reports ; 16(7): 1697-1704, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34214485

RESUMO

Eosinophils are attractive innate immune cells to use to potentiate T cell antitumor efficacy because they are capable of infiltrating tumors at early stages and modulating the tumor microenvironment. However, the limited number of functional eosinophils caused by the scarcity and short life of primary eosinophils in peripheral blood has greatly impeded the development of eosinophil-based immunotherapy. In this study, we established an efficient chemically defined protocol to generate a large quantity of functional eosinophils from human pluripotent stem cells (hPSCs) with nearly 100% purity expressing eosinophil peroxidase. These hPSC-derived eosinophils transcriptionally resembled their primary counterpart. Moreover, hPSC-derived eosinophils showed competent tumor killing capacity in established solid tumors. Furthermore, the combination of hPSC-derived eosinophils with CAR-T cells exhibited potential synergistic effects, inhibiting tumor growth and enhancing mouse survival. Our study opens up new avenues for the development of eosinophil-based immunotherapies to treat cancer.


Assuntos
Citotoxicidade Imunológica , Eosinófilos/citologia , Neoplasias/imunologia , Neoplasias/patologia , Células-Tronco Pluripotentes/citologia , Animais , Diferenciação Celular , Eosinófilos/ultraestrutura , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/ultraestrutura , Humanos , Camundongos , Células-Tronco Pluripotentes/ultraestrutura , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/metabolismo , Transcrição Gênica
8.
Cell Res ; 29(9): 696-710, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31270412

RESUMO

Terminally differentiated cells can be generated by lineage reprogramming, which is, however, hindered by incomplete conversion with residual initial cell identity and partial functionality. Here, we demonstrate a new reprogramming strategy by mimicking the natural regeneration route, which permits generating expandable hepatic progenitor cells and functionally competent human hepatocytes. Fibroblasts were first induced into human hepatic progenitor-like cells (hHPLCs), which could robustly expand in vitro and efficiently engraft in vivo. Moreover, hHPLCs could be efficiently induced into mature human hepatocytes (hiHeps) in vitro, whose molecular identity highly resembles primary human hepatocytes (PHHs). Most importantly, hiHeps could be generated in large quantity and were functionally competent to replace PHHs for drug-metabolism estimation, toxicity prediction and hepatitis B virus infection modeling. Our results highlight the advantages of the progenitor stage for successful lineage reprogramming. This strategy is promising for generating other mature human cell types by lineage reprogramming.


Assuntos
Reprogramação Celular , Fibroblastos/citologia , Hepatócitos/citologia , Animais , Diferenciação Celular , Linhagem da Célula , Células Cultivadas , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Fibroblastos/metabolismo , Expressão Gênica , Glucuronosiltransferase/genética , Glucuronosiltransferase/metabolismo , Vírus da Hepatite B/fisiologia , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Fígado/patologia , Fígado/virologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Transplante de Células-Tronco , Células-Tronco/citologia , Células-Tronco/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
Cell Discov ; 5: 2, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30622738

RESUMO

The limited number of human hematopoietic stem cells (HSCs) has restrained their widespread clinical application. Despite great efforts in recent years, the in vitro expansion of HSCs remains a challenge due to incomplete understanding of the signaling networks underlying HSC self-renewal. Here, we show that culturing human cord blood (CB) CD34+ cells with JNK-IN-8, an inhibitor of the JNK signaling pathway, can enhance the self-renewal of HSCs with a 3.88-fold increase in cell number. These cultured CD34+ cells repopulated recipient mice for 21 weeks and can form secondary engraftment that lasted for more than 21 weeks. Knockdown of c-Jun, a major downstream target in the JNK pathway, promoted the expansion of hematopoietic stem and progenitor cells (HSPCs). Our findings demonstrate a critical role of the JNK pathway in regulating HSC expansion, provide new insights into HSC self-renewal mechanism, and may lead to improved clinical application of HSCs.

10.
Plant Cell Environ ; 35(11): 1983-97, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22554042

RESUMO

The effects of potassium cyanide (KCN) pretreatment on the response of cucumber (Cucumis sativus L.) plants to salt, polyethylene glycol (PEG) and cold stress were investigated in the present study. Here, we found that KCN pretreatment improved cucumber seedlings tolerance to stress conditions with maximum efficiency at a concentration of 20 µM. The results showed that pretreatment with 20 µM KCN alleviated stress-induced oxidative damage in plant cells and clearly induced the activity of alternative oxidase (AOX) and the ethylene production. Furthermore, the structures of thylakoids and mitochondria in the KCN-pretreated seedlings were less damaged by the stress conditions, which maintained higher total chlorophyll content, photosynthetic rate and photosystem II (PSII) proteins levels than the control. Importantly, the addition of the AOX inhibitor salicylhydroxamic acid (1 mm; SHAM) decreased plant resistance to environmental stress and even compromised the cyanide (CN)-enhanced stress tolerance. Therefore, our findings provide a novel role of CN in plant against environmental stress and indicate that the CN-enhanced AOX might contribute to the reactive oxygen species (ROS) scavenging and the protection of photosystem by maintaining energy charge homoeostasis from chloroplast to mitochondria.


Assuntos
Cucumis sativus/efeitos dos fármacos , Cianeto de Potássio/farmacologia , Plântula/efeitos dos fármacos , Estresse Fisiológico , Antioxidantes/metabolismo , Etilenos/biossíntese , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...