Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
3.
Nat Microbiol ; 9(5): 1325-1339, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38589468

RESUMO

Drug-resistant fungal infections pose a significant threat to human health. Dual-targeting compounds, which have multiple targets on a single pathogen, offer an effective approach to combat drug-resistant pathogens, although ensuring potent activity and high selectivity remains a challenge. Here we propose a dual-targeting strategy for designing antifungal compounds. We incorporate DNA-binding naphthalene groups as the hydrophobic moieties into the host defence peptide-mimicking poly(2-oxazoline)s. This resulted in a compound, (Gly0.8Nap0.2)20, which targets both the fungal membrane and DNA. This compound kills clinical strains of multidrug-resistant fungi including Candida spp., Cryptococcus neoformans, Cryptococcus gattii and Aspergillus fumigatus. (Gly0.8Nap0.2)20 shows superior performance compared with amphotericin B by showing not only potent antifungal activities but also high antifungal selectivity. The compound also does not induce antimicrobial resistance. Moreover, (Gly0.8Nap0.2)20 exhibits promising in vivo therapeutic activities against drug-resistant Candida albicans in mouse models of skin abrasion, corneal infection and systemic infection. This study shows that dual-targeting antifungal compounds may be effective in combating drug-resistant fungal pathogens and mitigating fungal resistance.


Assuntos
Antifúngicos , Testes de Sensibilidade Microbiana , Antifúngicos/farmacologia , Antifúngicos/química , Animais , Camundongos , Humanos , Farmacorresistência Fúngica Múltipla , Modelos Animais de Doenças , Cryptococcus neoformans/efeitos dos fármacos , Aspergillus fumigatus/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Naftalenos/farmacologia , Naftalenos/química , Oxazóis/farmacologia , Oxazóis/química , Candida/efeitos dos fármacos , Micoses/tratamento farmacológico , Micoses/microbiologia
4.
J Am Chem Soc ; 145(47): 25753-25765, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-37966432

RESUMO

Invasive fungal infections, including meningitis, cause a high mortality rate due to few available antifungal drugs and frequently associated side effects and quick emergence of drug-resistant fungi. The restrictive permeability of the blood-brain barrier (BBB) further limits the efficacy of antifungal agents substantially in treating meningitis. Hereby, we design and synthesize guanidinium-functionalized poly(2-oxazoline)s by mimicking cell-penetrating peptides. The optimal polymer, PGMeOx10 bearing a methylene spacer arm, displays potent activities against the drug-resistant fungi and biofilm, negligible toxicity, and insusceptibility to antimicrobial resistance. Moreover, PGMeOx10 can break BBB retractions to exert promising antifungal functions in the brain. PGMeOx10 demonstrates potent in vivo antifungal therapeutic efficacy in mouse models including skin infection, systemic infections, and meningitis. PGMeOx10 effectively rescues infected mice and reduces fungal burden and inflammation in the brain. These results and the excellent biosafety of poly(2-oxazoline)s indicate the effectiveness and potential of our strategy to design promising antifungal agents in treating systemic infections and meningitis.


Assuntos
Antifúngicos , Meningite , Animais , Camundongos , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Antifúngicos/química , Barreira Hematoencefálica , Fungos , Peptídeos/farmacologia , Meningite/tratamento farmacológico , Testes de Sensibilidade Microbiana
5.
Plant Phenomics ; 5: 0027, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36939450

RESUMO

Silique morphology is an important trait that determines the yield output of oilseed rape (Brassica napus L.). Segmenting siliques and quantifying traits are challenging because of the complicated structure of an oilseed rape plant at the reproductive stage. This study aims to develop an accurate method in which a skeletonization algorithm was combined with the hierarchical segmentation (SHS) algorithm to separate siliques from the whole plant using 3-dimensional (3D) point clouds. We combined the L1-median skeleton with the random sample consensus for iteratively extracting skeleton points and optimized the skeleton based on information such as distance, angle, and direction from neighborhood points. Density-based spatial clustering of applications with noise and weighted unidirectional graph were used to achieve hierarchical segmentation of siliques. Using the SHS, we quantified the silique number (SN), silique length (SL), and silique volume (SV) automatically based on the geometric rules. The proposed method was tested with the oilseed rape plants at the mature stage grown in a greenhouse and field. We found that our method showed good performance in silique segmentation and phenotypic extraction with R 2 values of 0.922 and 0.934 for SN and total SL, respectively. Additionally, SN, total SL, and total SV had the statistical significance of correlations with the yield of a plant, with R values of 0.935, 0.916, and 0.897, respectively. Overall, the SHS algorithm is accurate, efficient, and robust for the segmentation of siliques and extraction of silique morphological parameters, which is promising for high-throughput silique phenotyping in oilseed rape breeding.

6.
Sci Adv ; 9(4): eabn0771, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36696494

RESUMO

Drug-resistant bacterial infections have caused serious threats to human health and call for effective antibacterial agents that have low propensity to induce antimicrobial resistance. Host defense peptide-mimicking peptides are actively explored, among which poly-ß-l-lysine displays potent antibacterial activity but high cytotoxicity due to the helical structure and strong membrane disruption effect. Here, we report an effective strategy to optimize antimicrobial peptides by switching membrane disrupting to membrane penetrating and intracellular targeting by breaking the helical structure using racemic residues. Introducing ß-homo-glycine into poly-ß-lysine effectively reduces the toxicity of resulting poly-ß-peptides and affords the optimal poly-ß-peptide, ßLys50HG50, which shows potent antibacterial activity against clinically isolated methicillin-resistant Staphylococcus aureus (MRSA) and MRSA persister cells, excellent biosafety, no antimicrobial resistance, and strong therapeutic potential in both local and systemic MRSA infections. The optimal poly-ß-peptide demonstrates strong therapeutic potential and implies the success of our approach as a generalizable strategy in designing promising antibacterial polypeptides.


Assuntos
Antibacterianos , Peptídeos Catiônicos Antimicrobianos , Permeabilidade da Membrana Celular , Farmacorresistência Bacteriana , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/fisiologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Farmacorresistência Bacteriana/fisiologia , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/fisiopatologia , Permeabilidade da Membrana Celular/efeitos dos fármacos , Permeabilidade da Membrana Celular/fisiologia
7.
Biomater Sci ; 10(16): 4515-4524, 2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35788576

RESUMO

Extensive use of antibiotics accelerates the emergence of drug-resistant bacteria and related infections. Host defense peptides (HDPs) have been studied as promising and potential therapeutic candidates. However, their clinical applications of HDPs are limited due to their high cost of synthesis and low stability upon proteolysis. Therefore, HDP mimics have become a new approach to address the challenge of bacterial resistance. In this work, we design the amphiphilic peptoid polymers by mimicking the positively charged and hydrophobic structures of HDPs and synthesize a series of cyclic peptoid polymers efficiently via the polymerization on α-amino acid N-substituted glycine N-carboxyanhydrides (α-NNCAs) using 1,8-diazabicycloundec-7-ene (DBU) as the initiator. The optimal cyclic peptoid polymer, poly(Naeg0.7Npfbg0.3)20, displays strong antibacterial activities against drug-resistant bacteria, but low hemolysis and cytotoxicity. In addition, the mode-of-action study indicates that the antibacterial mechanism is associated with bacterial membrane interaction. Our study implies that HDP mimicking cyclic peptoid polymers have potential application in treating drug-resistant bacterial infections.


Assuntos
Peptoides , Antibacterianos/química , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos , Bactérias , Testes de Sensibilidade Microbiana , Peptoides/química , Peptoides/farmacologia , Polímeros/química , Polímeros/farmacologia
8.
Biomater Sci ; 10(15): 4193-4207, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35730697

RESUMO

The pressure of antimicrobial resistance has forced many countries to reduce or even prohibit the use of antibiotics in feed. Therefore, it is an urgent need to develop alternatives to antibiotics to control infectious diseases in feed and aquaculture. To address this long-lasting challenge, we prepared peptide polymers that display potent and broad-spectrum activity against common pathogenic bacteria in aquaculture, low hemolysis and low cytotoxicity, and do not induce bacteria to develop resistance or cross-resistance to antibiotics. The optimal peptide polymer demonstrates strong in vivo therapeutic potential in an adult zebrafish infection model. Moreover, the optimal peptide polymer is biodegradable by enzymes into single amino acids and dipeptides to totally lose its antibacterial activity and, therefore, will not cause antimicrobial selective pressure. Our study suggests that peptide polymers are promising alternatives to antibiotics in aquaculture and open new avenues to address the global challenge of antimicrobial resistance.


Assuntos
Antibacterianos , Anti-Infecciosos , Animais , Antibacterianos/química , Anti-Infecciosos/farmacologia , Aquicultura , Testes de Sensibilidade Microbiana , Peptídeos/química , Peptídeos/farmacologia , Polímeros/química , Polímeros/farmacologia , Peixe-Zebra
9.
Plant Cell Environ ; 45(8): 2324-2336, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35590441

RESUMO

Stomata regulate leaf CO2 assimilation (A) and water loss. The Ball-Berry and Medlyn models predict stomatal conductance (gs ) with a slope parameter (m or g1 ) that reflects the sensitivity of gs to A, atmospheric CO2  and humidity, and is inversely related to water use efficiency (WUE). This study addressed knowledge gaps about what the values of m and g1 are in C4 crops under field conditions, as well as how they vary among genotypes and with drought stress. Four inbred maize genotypes were unexpectedly consistent in how m and g1 decreased as water supply decreased. This was despite genotypic variation in stomatal patterning, A and gs . m and g1 were strongly correlated with soil water content, moderately correlated with predawn leaf water potential (Ψpd ), but not correlated with midday leaf water potential (Ψmd ). This implied that m and g1 respond to long-term water supply more than short-term drought stress. The conserved nature of m and g1 across anatomically diverse genotypes and water supplies suggests there is flexibility in structure-function relationships underpinning WUE. This evidence can guide the simulation of maize gs across a range of water supply in the primary maize growing region and inform efforts to improve WUE.


Assuntos
Fotossíntese , Zea mays , Dióxido de Carbono , Secas , Fotossíntese/fisiologia , Folhas de Planta/genética , Estômatos de Plantas/fisiologia , Abastecimento de Água , Zea mays/genética
10.
Adv Sci (Weinh) ; 9(14): e2104871, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35307990

RESUMO

Potent and selective antifungal agents are urgently needed due to the quick increase of serious invasive fungal infections and the limited antifungal drugs available. Microbial metabolites have been a rich source of antimicrobial agents and have inspired the authors to design and obtain potent and selective antifungal agents, poly(DL-diaminopropionic acid) (PDAP) from the ring-opening polymerization of ß-amino acid N-thiocarboxyanhydrides, by mimicking ε-poly-lysine. PDAP kills fungal cells by penetrating the fungal cytoplasm, generating reactive oxygen, and inducing fungal apoptosis. The optimal PDAP displays potent antifungal activity with minimum inhibitory concentration as low as 0.4 µg mL-1 against Candida albicans, negligible hemolysis and cytotoxicity, and no susceptibility to antifungal resistance. In addition, PDAP effectively inhibits the formation of fungal biofilms and eradicates the mature biofilms. In vivo studies show that PDAP is safe and effective in treating fungal keratitis, which suggests PDAPs as promising new antifungal agents.


Assuntos
Antifúngicos , Polímeros , Antifúngicos/química , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Candida albicans , Testes de Sensibilidade Microbiana , Peptídeos , Polímeros/química
11.
Angew Chem Int Ed Engl ; 61(17): e202200778, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35182092

RESUMO

New antifungals are urgently needed to combat invasive fungal infections, due to limited types of available antifungal drugs and frequently encountered side effects, as well as the quick emergence of drug-resistance. We previously developed amine-pendent poly(2-oxazoline)s (POXs) as synthetic mimics of host defense peptides (HDPs) to have antibacterial properties, but with poor antifungal activity. Hereby, we report the finding of short guanidinium-pendent POXs, inspired by cell-penetrating peptides, as synthetic mimics of HDPs to display potent antifungal activity, superior mammalian cells versus fungi selectivity, and strong therapeutic efficacy in treating local and systemic fungal infections. Moreover, the unique antifungal mechanism of fungal cell membrane penetration and organelle disruption explains the insusceptibility of POXs to antifungal resistance. The easy synthesis and structural diversity of POXs imply their potential as a class of promising antifungal agents.


Assuntos
Anti-Infecciosos , Micoses , Animais , Anti-Infecciosos/farmacologia , Antifúngicos/química , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Peptídeos Catiônicos Antimicrobianos/farmacologia , Fungos , Guanidina/farmacologia , Mamíferos , Testes de Sensibilidade Microbiana , Micoses/tratamento farmacológico , Oxazóis
12.
IEEE Trans Cybern ; 52(11): 11847-11858, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34029202

RESUMO

Detecting small low-contrast targets in the airspace is an essential and challenging task. This article proposes a simple and effective data-driven support vector machine (SVM)-based spatiotemporal feature fusion detection method for small low-contrast targets. We design a novel pixel-level feature, called a spatiotemporal profile, to depict the discontinuity of each pixel in the spatial and temporal domains The spatiotemporal profile is a local patch of the spatiotemporal feature maps concatenated by the spatial feature maps and temporal feature maps in channelwise, which are generated by the morphological black-hat filter and a ghost-free dark-focusing frame difference methods, respectively. Instead of the handcrafted feature fusion mechanisms in previous works, we use the labeled spatiotemporal profiles to train an SVM classifier to learn the spatiotemporal feature fusion mechanism automatically. To speed up detection for high-resolution videos, the serial SVM classification process on central processing units (CPUs) is reformed as parallel convolution operations on graphics processing unit (GPUs), which exhibits over 1000+ times speedup in our real experiments. Finally, blob analysis is applied to generate final detection results. Elaborate experiments are conducted, and experimental results demonstrate that the proposed method performs better than 12 baseline methods for the small low-contrast target detection. The field tests manifest that the parallel implementation of the proposed method can realize real-time detection at 15.3 FPS for videos at a resolution of 2048×1536 and the maximum detection distance can reach 1 km for drones in sunny weather.


Assuntos
Máquina de Vetores de Suporte
13.
Nat Commun ; 12(1): 6331, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34732724

RESUMO

Hydrogels have been extensively used in many fields. Current synthesis of functional hydrogels requires incorporation of functional molecules either before or during gelation via the pre-organized reactive site along the polymer chains within hydrogels, which is tedious for polymer synthesis and not flexible for different types of hydrogels. Inspired by sandcastle worm, we develop a simple one-step strategy to functionalize wet hydrogels using molecules bearing an adhesive dibutylamine-DOPA-lysine-DOPA tripeptide. This tripeptide can be easily modified with various functional groups to initiate diverse types of polymerizations and provide functional polymers with a terminal adhesive tripeptide. Such functional molecules enable direct modification of wet hydrogels to acquire biological functions such as antimicrobial, cell adhesion and wound repair. The strategy has a tunable functionalization degree and a stable attachment of functional molecules, which provides a tool for direct and convenient modification of wet hydrogels to provide them with diverse functions and applications.


Assuntos
Hidrogéis/química , Poliquetos/metabolismo , Polímeros/química , Adesivos , Animais , Materiais Biocompatíveis/química , Adesão Celular , Feminino , Hidrogéis/farmacologia , Lisina , Camundongos , Células NIH 3T3 , Polimerização , Polímeros/farmacologia , Ratos , Ratos Sprague-Dawley
14.
Nat Commun ; 12(1): 5898, 2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34625571

RESUMO

Methicillin-Resistant Staphylococcus aureus (MRSA) induced infection calls for antibacterial agents that are not prone to antimicrobial resistance. We prepare protease-resistant peptoid polymers with variable C-terminal functional groups using a ring-opening polymerization of N-substituted N-carboxyanhydrides (NNCA), which can provide peptoid polymers easily from the one-pot synthesis. We study the optimal polymer that displays effective activity against MRSA planktonic and persister cells, effective eradication of highly antibiotic-resistant MRSA biofilms, and potent anti-infectious performance in vivo using the wound infection model, the mouse keratitis model, and the mouse peritonitis model. Peptoid polymers show insusceptibility to antimicrobial resistance, which is a prominent merit of these antimicrobial agents. The low cost, convenient synthesis and structure diversity of peptoid polymers, the superior antimicrobial performance and therapeutic potential in treating MRSA infection altogether imply great potential of peptoid polymers as promising antibacterial agents in treating MRSA infection and alleviating antibiotic resistance.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Peptoides/farmacologia , Polímeros/farmacologia , Animais , Biofilmes/efeitos dos fármacos , Biopolímeros/química , Biopolímeros/farmacologia , Bactérias Gram-Positivas/efeitos dos fármacos , Camundongos , Testes de Sensibilidade Microbiana , Peptoides/química , Polimerização , Polímeros/química , Infecções Estafilocócicas/tratamento farmacológico
15.
iScience ; 24(10): 103124, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34622171

RESUMO

The fascinating functions of proteins and peptides in biological systems have attracted intense interest to explore their mimics using polymers, including polypeptides synthesized from polymerization. The folding, structures and functions of proteins and polypeptides are largely dependent on their sequence. However, sequence-tunable polymerization for polypeptide synthesis is a long-lasting challenge. The application of polypeptides is also greatly hindered by their susceptibility to enzymatic degradation. Although poly-α/ß-peptide has proven to be an effective strategy to address the stability issue, the synthesis of poly-α/ß-peptide from polymerization is not available yet. Hereby, we demonstrate a living and controlled copolymerization on α-NCA and ß-NTA to prepare sequence-tunable poly-α/ß-peptides. This polymerization strategy shows a prominent solvent-driven characteristic, providing random-like copolymers of poly-α/ß-peptides in THF and block-like copolymers of poly-α/ß-peptides in a mixed solvent of CHCl3/H2O (95/5, v/v), and opens new avenues for sequence-tunable polymerization and enables facile synthesis of proteolysis tunable poly-α/ß-peptides for diverse applications.

16.
Plant Physiol ; 187(3): 1462-1480, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34618057

RESUMO

Stomata are adjustable pores on leaf surfaces that regulate the tradeoff of CO2 uptake with water vapor loss, thus having critical roles in controlling photosynthetic carbon gain and plant water use. The lack of easy, rapid methods for phenotyping epidermal cell traits have limited discoveries about the genetic basis of stomatal patterning. A high-throughput epidermal cell phenotyping pipeline is presented here and used for quantitative trait loci (QTL) mapping in field-grown maize (Zea mays). The locations and sizes of stomatal complexes and pavement cells on images acquired by an optical topometer from mature leaves were automatically determined. Computer estimated stomatal complex density (SCD; R2 = 0.97) and stomatal complex area (SCA; R2 = 0.71) were strongly correlated with human measurements. Leaf gas exchange traits were genetically correlated with the dimensions and proportions of stomatal complexes (rg = 0.39-0.71) but did not correlate with SCD. Heritability of epidermal traits was moderate to high (h2 = 0.42-0.82) across two field seasons. Thirty-six QTL were consistently identified for a given trait in both years. Twenty-four clusters of overlapping QTL for multiple traits were identified, with univariate versus multivariate single marker analysis providing evidence consistent with pleiotropy in multiple cases. Putative orthologs of genes known to regulate stomatal patterning in Arabidopsis (Arabidopsis thaliana) were located within some, but not all, of these regions. This study demonstrates how discovery of the genetic basis for stomatal patterning can be accelerated in maize, a C4 model species where these processes are poorly understood.


Assuntos
Botânica/métodos , Mapeamento Cromossômico/instrumentação , Aprendizado de Máquina , Fenótipo , Estômatos de Plantas/fisiologia , Locos de Características Quantitativas , Zea mays/genética , Botânica/instrumentação , Genes de Plantas
17.
J Exp Bot ; 72(7): 2434-2449, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33337484

RESUMO

Floral patterning is regulated by intricate networks of floral identity genes. The peculiar MADS32 subfamily genes, absent in eudicots but prevalent in monocots, control floral organ identity. However, how the MADS32 family genes interact with other floral homeotic genes during flower development is mostly unknown. We show here that the rice homeotic transcription factor OsMADS32 regulates floral patterning by interacting synergistically with E class protein OsMADS6 in a dosage-dependent manner. Furthermore, our results indicate important roles for OsMADS32 in defining stamen, pistil, and ovule development through physical and genetic interactions with OsMADS1, OsMADS58, and OsMADS13, and in specifying floral meristem identity with OsMADS6, OsMADS3, and OsMADS58, respectively. Our findings suggest that OsMADS32 is an important factor for floral meristem identity maintenance and that it integrates the action of other MADS-box homeotic proteins to sustain floral organ specification and development in rice. Given that OsMADS32 is an orphan gene and absent in eudicots, our data substantially expand our understanding of flower development in plants.


Assuntos
Flores/fisiologia , Proteínas de Domínio MADS/metabolismo , Oryza , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Genes Homeobox , Proteínas de Domínio MADS/genética , Oryza/genética , Oryza/metabolismo , Fenótipo , Proteínas de Plantas/genética , Fatores de Transcrição/genética
18.
ChemMedChem ; 16(2): 309-315, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-32926562

RESUMO

Poly(2-oxazoline)s have excellent biocompatibility and have been used as FDA-approved indirect food additives. The inert property of the hydrophilic poly(2-oxazoline)s suggests them as promising substitutes for poly(ethylene glycol) (PEG) in various applications such as anti-biofouling agents. It was recently reported that poly(2-oxazoline)s themselves have antimicrobial properties as synthetic mimics of host defense peptides. These studies revealed the bioactive properties of poly(2-oxazoline)s as a new class of functional peptide mimics, by mimicking host defense peptides to display potent and selective antimicrobial activities against methicillin-resistant Staphylococcus aureus both in vitro and in vivo, without concerns about antimicrobial resistance. The high structural diversity, facile synthesis, and potent and tunable antimicrobial properties underscore the great potential of poly(2-oxazoline)s as a class of novel antimicrobial agents in dealing with drug-resistant microbial infections and antimicrobial resistance.


Assuntos
Antibacterianos/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Oxazóis/farmacologia , Peptídeos/farmacologia , Antibacterianos/química , Testes de Sensibilidade Microbiana , Oxazóis/química , Peptídeos/química
19.
ACS Appl Bio Mater ; 4(5): 3811-3829, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35006811

RESUMO

Infections have accounted for the majority of failures in implants over the past decades. Host defense peptide mimicking polymers have been considered as one of the promising antimicrobial candidates for their cost-effective synthesis, broad-spectrum antimicrobial activity, low propensity to induce drug resistance, and remarkable biocompatibility. In this review, covalent-grafting strategies are mainly discussed to tether host defense peptide mimicking polymers on surfaces, aiming to obtain potent antimicrobial activity. In addition to the antimicrobial function, we review the antimicrobial mechanism of these polymer-modified antimicrobial surfaces in precedent literatures. We also review the in vivo subcutaneous implant infection models that are critical assessments for potential biomedical applications. In the end, we provide our perspective on the future development of this field, especially for biomedical applications.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Materiais Biocompatíveis/farmacologia , Polímeros/farmacologia , Próteses e Implantes/microbiologia , Infecções Relacionadas à Prótese/tratamento farmacológico , Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/química , Bactérias/efeitos dos fármacos , Materiais Biocompatíveis/química , Humanos , Teste de Materiais , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Polímeros/química , Infecções Relacionadas à Prótese/microbiologia , Propriedades de Superfície
20.
J Med Chem ; 63(21): 12921-12928, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33126797

RESUMO

Therapeutic options to treat multidrug resistant bacteria, especially when present in biofilms, are limited due to their high levels of antibiotic resistance. Here, we report the anti-biofilm and immunomodulatory activities of the host defense peptide (HDP)-mimicking ß-peptide polymer (20:80 Bu:DM) and investigated its activity in vivo. The polymer outperformed antibiotics in the removal and reduction of the viability of established biofilms, achieving a maximum activity of around 80% reduction in viability. Interestingly the polymer also exhibited HDP-like immunomodulation in inducing chemokines and anti-inflammatory cytokines and suppressing lipopolysaccharide-induced proinflammatory cytokines. When tested in a murine, high-density skin infection model using P. aeruginosa LESB58, the polymer was effective in diminishing abscess size and reducing bacterial load. This study demonstrates the dual functionality of HDP-mimicking ß-peptide polymers in inhibiting biofilms and modulating innate immunity, as well as reducing tissue dermonecrosis.


Assuntos
Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Biofilmes/efeitos dos fármacos , Polímeros/química , Animais , Antibacterianos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/uso terapêutico , Sobrevivência Celular/efeitos dos fármacos , Citocinas/farmacologia , Modelos Animais de Doenças , Humanos , Imunidade Inata/efeitos dos fármacos , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Staphylococcus aureus Resistente à Meticilina , Testes de Sensibilidade Microbiana , Peptidomiméticos , Polímeros/farmacologia , Polímeros/uso terapêutico , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Dermatopatias/tratamento farmacológico , Dermatopatias/microbiologia , Dermatopatias/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...