Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
J Adv Res ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38960276

RESUMO

INTRODUCTION: Growing interest toward RNA modification in cancer has inspired the exploration of gene sets related to multiple RNA modifications. However, a comprehensive elucidation of the clinical value of various RNA modifications in breast cancer is still lacking. OBJECTIVES: This study aimed to provide a strategy based on RNA modification-related genes for predicting therapy response and survival outcomes in breast cancer patients. METHODS: Genes related to thirteen RNA modification patterns were integrated for establishing a nine-gene-containing signature-RMscore. Alterations of tumor immune microenvironment and therapy response featured by different RMscore levels were assessed by bulk transcriptome, single-cell transcriptome and genomics analyses. The biological function of key RMscore-related molecules was investigated by cellular experiments in vitro and in vivo, using flow cytometry, immunohistochemistry and immunofluorescence staining. RESULTS: This study has raised an effective therapy strategy for breast cancer patients after a well-rounded investigation of RNA modification-related genes. With a great performance of predicting patient prognosis, high levels of the RMscore proposed in this study represented suppressive immune microenvironment and therapy resistance, including adjuvant chemotherapy and PD-L1 blockade treatment. As the key contributor of the RMscore, inhibition of WDR4 impaired breast cancer progression significantly in vitro and in vivo, as well as participated in regulating cell cycle and mTORC1 signaling pathway via m7G modification. CONCLUSION: Briefly, this study has developed promising and effective tactics to achieve the prediction of survival probabilities and treatment response in breast cancer patients.

2.
Skeletal Radiol ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39028463

RESUMO

OBJECTIVES: This study utilizes [99mTc]-methylene diphosphate (MDP) single photon emission computed tomography (SPECT) images as a reference standard to evaluate whether the integration of radiomics features from computed tomography (CT) and machine learning algorithms can identify microscopic early bone metastases. Additionally, we also determine the optimal machine learning approach. MATERIALS AND METHODS: We retrospectively studied 63 patients with early bone metastasis from July 2020 to March 2023. The ITK-SNAP software was used to delineate early bone metastases and normal bone tissue in SPECT images of each patient, which were then registered onto CT images to outline the volume of interest (VOI). The VOI includes 63 early bone metastasis volumes and 63 normal bone tissue volumes. 126 VOIs were randomly distributed in a 7:3 ratio between the training and testing groups, and 944 radiomics features were extracted from every VOI. We established 20 machine learning models using 5 feature selection algorithms and 4 classification methods. Evaluate the performance of the model using the area under the receiver operating characteristic curve (AUC). RESULTS: Most machine learning models demonstrated outstanding discriminative capacity, with AUCs higher than 0.70. Notably, the K-Nearest Neighbors (KNN) classifier exhibited significant performance improvement compared to the other four classifiers. Specifically, the model constructed utilizing eXtreme Gradient Boosting (XGBoost) feature selection method integrated with KNN classifier achieved the maximum AUC, which is 0.989 in the training set and 0.975 in the testing set. CONCLUSIONS: Radiomics features integrated with machine learning methods can identify early bone metastases that are not visible on CT images. In our analysis, KNN is considered the optimal classification method.

3.
Cell Prolif ; : e13697, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38943472

RESUMO

Distant metastasis remains the primary cause of morbidity in patients with breast cancer. Hence, the development of more efficacious strategies and the exploration of potential targets for patients with metastatic breast cancer are urgently needed. The data of six patients with breast cancer brain metastases (BCBrM) from two centres were collected, and a comprehensive landscape of the entire tumour ecosystem was generated through the utilisation of single-cell RNA sequencing. We utilised the Monocle2 and CellChat algorithms to investigate the interrelationships among each subcluster. In addition, multiple signatures were collected to evaluate key components of the subclusters through multi-omics methodologies. Finally, we elucidated common expression programs of malignant cells, and experiments were conducted in vitro and in vivo to determine the functions of interleukin enhancer-binding factor 2 (ILF2), which is a key gene in the metastasis module, in BCBrM progression. We found that subclusters in each major cell type exhibited diverse characteristics. Besides, our study indicated that ILF2 was specifically associated with BCBrM, and experimental validations further demonstrated that ILF2 deficiency hindered BCBrM progression. Our study offers novel perspectives on the heterogeneity of BCBrM and suggests that ILF2 could serve as a promising biomarker or therapeutic target for BCBrM.

4.
Imeta ; 3(1): e156, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38868510

RESUMO

Gut microbiota is essential for maintaining local and systemic immune homeostasis in the presence of bacterial challenges. It has been demonstrated that microbiota play contrasting roles in cancer development as well as anticancer immunity. Cancer immunotherapy, a novel anticancer therapy that relies on the stimulation of host immunity, has suffered from a low responding rate and incidence of severe immune-related adverse events (irAEs). Previous studies have demonstrated that the diversity and composition of gut microbiota were associated with the heterogeneity of therapeutic effects. Therefore, alteration in microbiota taxa can lead to improved clinical outcomes in immunotherapy. In this review, we determine whether microbiota composition or microbiota-derived metabolites are linked to responses to immunotherapy and irAEs. Moreover, we discuss various approaches to improve immunotherapy efficacy or reduce toxicities by modulating microbiota composition.

5.
Front Immunol ; 15: 1382520, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38698857

RESUMO

Background: The Y-box-binding proteins (YBX) act as a multifunctional role in tumor progression, metastasis, drug resistance by regulating the transcription and translation process. Nevertheless, their functions in a pan-cancer setting remain unclear. Methods: This study examined the clinical features expression, prognostic value, mutations, along with methylation patterns of three genes from the YBX family (YBX1, YBX2, and YBX3) in 28 different types of cancer. Data used for analysis were obtained from Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases. A novel YBXs score was created using the ssGSEA algorithm for the single sample gene set enrichment analysis. Additionally, we explored the YBXs score's association with the tumor microenvironment (TME), response to various treatments, and drug resistance. Results: Our analysis revealed that YBX family genes contribute to tumor progression and are indicative of prognosis in diverse cancer types. We determined that the YBXs score correlates significantly with numerous malignant pathways in pan-cancer. Moreover, this score is also linked with multiple immune-related characteristics. The YBXs score proved to be an effective predictor for the efficacy of a range of treatments in various cancers, particularly immunotherapy. To summarize, the involvement of YBX family genes is vital in pan-cancer and exhibits a significant association with TME. An elevated YBXs score indicates an immune-activated TME and responsiveness to diverse therapies, highlighting its potential as a biomarker in individuals with tumors. Finally, experimental validations were conducted to explore that YBX2 might be a potential biomarker in liver cancer. Conclusion: The creation of YBXs score in our study offered new insights into further studies. Besides, YBX2 was found as a potential therapeutic target, significantly contributing to the improvement of HCC diagnosis and treatment strategies.


Assuntos
Biomarcadores Tumorais , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas , Microambiente Tumoral , Humanos , Biomarcadores Tumorais/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/diagnóstico , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Prognóstico , Proteína 1 de Ligação a Y-Box/genética , Proteína 1 de Ligação a Y-Box/metabolismo , Mutação , Resistencia a Medicamentos Antineoplásicos/genética , Perfilação da Expressão Gênica , Linhagem Celular Tumoral , Metilação de DNA
6.
Cancer Lett ; 592: 216907, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38685451

RESUMO

Cancer metastasis is the major cause of death in patients with breast cancer (BC). The liver is a common site of breast cancer metastasis, and the 5-year survival rate of patients with breast cancer liver metastases (BCLMs) is only about 8.5 %. CircRNAs are involved in a variety of cancer-related pathological behaviors, and their unique structure and resistance to RNA degradation enable them to serve as ideal diagnostic biomarkers and therapeutic targets. Therefore, it is important to investigate the role and molecular mechanism of circRNAs in cancer metastasis. CircLIFR-007 was identified as a critical circular RNA in BC metastasis by circRNAs microarray and qRT-PCR experiment. Cell function assays were performed to explore the effect of circLIFR-007 in breast cancer cells. Experiments in vivo validated the function of circLIFR-007. Several molecular assays were performed to investigate the underlying mechanisms. We found that circLIFR-007 acted as a negative controller in breast cancer liver metastasis. CircLIFR-007 upregulates the phosphorylation level of YAP by exporting hnRNPA1 to promote the combination between hnRNPA1 and YAP in the cytoplasm. Overexpression of circLIFR-007 suppressed the expression of liver metastasis-related proteins, SREBF1 and SNAI1, which were regulated by transcription factor YAP. Functionally, circLIFR-007 inhibits the proliferation and metastasis of breast cancer cells both in vivo and in vitro.


Assuntos
Neoplasias da Mama , Ribonucleoproteína Nuclear Heterogênea A1 , Neoplasias Hepáticas , RNA Circular , Fatores de Transcrição , Proteínas de Sinalização YAP , Humanos , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Feminino , Proteínas de Sinalização YAP/metabolismo , Fosforilação , Animais , Ribonucleoproteína Nuclear Heterogênea A1/metabolismo , Ribonucleoproteína Nuclear Heterogênea A1/genética , RNA Circular/genética , RNA Circular/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Camundongos , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Transporte Ativo do Núcleo Celular , Camundongos Nus , Proliferação de Células , Camundongos Endogâmicos BALB C , Células MCF-7
7.
Adv Sci (Weinh) ; 11(23): e2401061, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38569519

RESUMO

The heterogeneity of macrophages influences the response to immune checkpoint inhibitor (ICI) therapy. However, few studies explore the impact of APOE+ macrophages on ICI therapy using single-cell RNA sequencing (scRNA-seq) and machine learning methods. The scRNA-seq and bulk RNA-seq data are Integrated to construct an M.Sig model for predicting ICI response based on the distinct molecular signatures of macrophage and machine learning algorithms. Comprehensive single-cell analysis as well as in vivo and in vitro experiments are applied to explore the potential mechanisms of the APOE+ macrophage in affecting ICI response. The M.Sig model shows clear advantages in predicting the efficacy and prognosis of ICI therapy in pan-cancer patients. The proportion of APOE+ macrophages is higher in ICI non-responders of triple-negative breast cancer compared with responders, and the interaction and longer distance between APOE+ macrophages and CD8+ exhausted T (Tex) cells affecting ICI response is confirmed by multiplex immunohistochemistry. In a 4T1 tumor-bearing mice model, the APOE inhibitor combined with ICI treatment shows the best efficacy. The M.Sig model using real-world immunotherapy data accurately predicts the ICI response of pan-cancer, which may be associated with the interaction between APOE+ macrophages and CD8+ Tex cells.


Assuntos
Apolipoproteínas E , Inibidores de Checkpoint Imunológico , Macrófagos , Análise de Célula Única , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Camundongos , Animais , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Análise de Célula Única/métodos , Humanos , Apolipoproteínas E/genética , Modelos Animais de Doenças , Feminino , Aprendizado de Máquina , Microambiente Tumoral/imunologia , Microambiente Tumoral/efeitos dos fármacos
8.
CNS Neurosci Ther ; 30(4): e14735, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38676299

RESUMO

The etiology of epilepsy is ascribed to the synchronized aberrant neuronal activity within the brain. Circular RNAs (circRNAs), a class of non-coding RNAs characterized by their circular structures and covalent linkage, exert a substantial influence on this phenomenon. CircRNAs possess stereotyped replication, transience, repetitiveness, and paroxysm. Additionally, MicroRNA (miRNA) plays a crucial role in the regulation of diverse pathological processes, including epilepsy. CircRNA is of particular significance due to its ability to function as a competing endogenous RNA, thereby sequestering or inhibiting miRNA activity through binding to target mRNA. Our review primarily concentrates on elucidating the pathological and functional roles, as well as the underlying mechanisms, of circRNA-miRNA-mRNA networks in epilepsy. Additionally, it explores the potential utility of these networks for early detection and therapeutic intervention.


Assuntos
Epilepsia , Redes Reguladoras de Genes , MicroRNAs , RNA Circular , RNA Circular/genética , RNA Circular/metabolismo , Humanos , Epilepsia/genética , Epilepsia/metabolismo , Redes Reguladoras de Genes/fisiologia , Redes Reguladoras de Genes/genética , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , RNA Endógeno Competitivo
9.
Drug Resist Updat ; 73: 101063, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38335844

RESUMO

AIMS: This study aims to explore the function and mechanism of G Protein-coupled receptor class C group 5 member A (GPRC5A) in docetaxel-resistance and liver metastasis of breast cancer. METHODS: Single-cell RNA transcriptomic analysis and bioinformatic analysis are used to screen relevant genes in breast cancer metastatic hepatic specimens. MeRIP, dual-luciferase analysis and bioinformation were used to detect m6A modulation. Mass spectrometry (MS), co-inmunoprecipitation (co-IP) and immunofluorescence colocalization were executed to explore the mechanism of GPRC5A in breast cancer cells. RESULT: GPRC5A was upregulated in triple-negative breast cancer (TNBC) and was associated with a poor prognosis. In vitro and in vivo experiments demonstrated that knockdown of GPRC5A alleviated metastasis and resistance to docetaxel in TNBC. Overexpression of GPRC5A had the opposite effects. The m6A methylation of GPRC5A mRNA was modulated by METTL3 and YTHDF1, which facilitates its translation. GPRC5A inhibited the ubiquitination-dependent degradation of LAMTOR1, resulting in the recruitment of mTORC1 to lysosomes and activating the mTORC1/p70s6k signaling pathway. CONCLUSION: METTL3/YTHDF1 axis up-regulates GPRC5A expression by m6A methylation. GPRC5A activates mTORC1/p70s6k signaling pathway by recruiting mTORC1 to lysosomes, consequently promotes docetaxel-resistance and liver metastasis.


Assuntos
Neoplasias Hepáticas , Neoplasias de Mama Triplo Negativas , Humanos , Docetaxel/farmacologia , Docetaxel/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Proteínas Quinases S6 Ribossômicas 70-kDa , Transdução de Sinais , Metilação , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Receptores Acoplados a Proteínas G/genética , Serina-Treonina Quinases TOR/genética , Alvo Mecanístico do Complexo 1 de Rapamicina , Metiltransferases
10.
MedComm (2020) ; 5(3): e502, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38420162

RESUMO

Disruption of disulfide homeostasis during biological processes can have fatal consequences. Excess disulfides induce cell death in a novel manner, termed as "disulfidptosis." However, the specific mechanism of disulfidptosis has not yet been elucidated. To determine the cancer types sensitive to disulfidptosis and outline the corresponding treatment strategies, we firstly investigated the crucial functions of disulfidptosis regulators pan-cancer at multi-omics levels. We found that different tumor types expressed dysregulated levels of disulfidptosis regulators, most of which had an impact on tumor prognosis. Moreover, we calculated the disulfidptosis activity score in tumors and validated it using multiple independent datasets. Additionally, we found that disulfidptosis activity was correlated with classic biological processes and pathways in various cancers. Disulfidptosis activity was also associated with tumor immune characteristics and could predict immunotherapy outcomes. Notably, the disulfidptosis regulator, glycogen synthase 1 (GYS1), was identified as a promising target for triple-negative breast cancer and validated via in vitro and in vivo experiments. In conclusion, our study elucidated the complex molecular phenotypes and clinicopathological correlations of disulfidptosis regulators in tumors, laying a solid foundation for the development of disulfidptosis-targeting strategies for cancer treatment.

11.
Cell Rep Med ; 5(2): 101399, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38307032

RESUMO

Colorectal cancer (CRC) is a common malignancy involving multiple cellular components. The CRC tumor microenvironment (TME) has been characterized well at single-cell resolution. However, a spatial interaction map of the CRC TME is still elusive. Here, we integrate multiomics analyses and establish a spatial interaction map to improve the prognosis, prediction, and therapeutic development for CRC. We construct a CRC immune module (CCIM) that comprises FOLR2+ macrophages, exhausted CD8+ T cells, tolerant CD8+ T cells, exhausted CD4+ T cells, and regulatory T cells. Multiplex immunohistochemistry is performed to depict the CCIM. Based on this, we utilize advanced deep learning technology to establish a spatial interaction map and predict chemotherapy response. CCIM-Net is constructed, which demonstrates good predictive performance for chemotherapy response in both the training and testing cohorts. Lastly, targeting FOLR2+ macrophage therapeutics is used to disrupt the immunosuppressive CCIM and enhance the chemotherapy response in vivo.


Assuntos
Neoplasias Colorretais , Aprendizado Profundo , Receptor 2 de Folato , Humanos , Linfócitos T CD8-Positivos , Multiômica , Macrófagos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Microambiente Tumoral/genética
12.
Sci China Life Sci ; 67(4): 653-662, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38198029

RESUMO

PIWI-interacting RNAs (piRNAs) are a class of small noncoding RNA molecules that specifically bind to piwi protein family members to exert regulatory functions in germ cells. Recent studies have found that piRNAs, as tissue-specific molecules, both play oncogenic and tumor suppressive roles in cancer progression, including cancer cell proliferation, metastasis, chemoresistance and stemness. Additionally, the atypical manifestation of piRNAs and PIWI proteins in various malignancies presents a promising strategy for the identification of novel biomarkers and therapeutic targets in the diagnosis and management of tumors. Nonetheless, the precise functions of piRNAs in cancer progression and their underlying mechanisms have yet to be fully comprehended. This review aims to examine current research on the biogenesis and functions of piRNA and its burgeoning importance in cancer progression, thereby offering novel perspectives on the potential utilization of piRNAs and piwi proteins in the management and treatment of advanced cancer.


Assuntos
Neoplasias , Pequeno RNA não Traduzido , Humanos , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Neoplasias/metabolismo , RNA de Interação com Piwi , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
13.
Int J Biol Sci ; 20(3): 848-863, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38250157

RESUMO

Macrophages can be polarized into functional classically activated (M1) or alternatively activated (M2) phenotype. Tumor-associated macrophages (TAMs) mainly exhibit M2 phenotype. Previous works determined that up-regulation of enolase 2 (ENO2) in diffuse large B-cell lymphoma (DLBCL) cells can promote macrophages to an M2-like phenotype, thereby consequently promoting the progression of DLBCL. Exosomes are a subset of extracellular vesicles, carrying various bioactive molecules, mediate signals transduction and regulate immune cells. In our study, we investigated the role and related mechanisms of DLBCL-derived exosomal ENO2 in regulating macrophage polarization during DLBCL progression via bioinformatics analysis and a series of experiments. The results of bioinformatics analysis indicated that high expression of ENO2 was positively correlated with DLBCL progression and macrophages M2/M1 ratio. ENO2 protein levels were increased in the exosomes of the sera of DLBCL patients and DLBCL cells. Moreover, the DLBCL-derived exosomes were assimilated by macrophages and then regulated macrophage polarization. The results of in vitro and in vivo experiments showed that DLBCL-derived exosomal ENO2 modulated macrophages polarization (increased M2 phenotype and decreased M1 phenotype), thereby promoting DLBCL proliferation, migration, and invasion. We then revealed that the modulation of macrophages polarization by DLBCL-derived exosomal ENO2 depended on glycolysis and was promoted through GSK3ß/ß-catenin/c-Myc signaling pathway. These findings suggested that DLBCL-derived exosomal ENO2 accelerated glycolysis via GSK3ß/ß-catenin/c-Myc signaling pathway to ultimately promote macrophages to an M2-like phenotype, which can promote the proliferation, migration and invasion of DLBCL, suggesting that exosomal ENO2 may be a promising therapeutic target and prognostic biomarker for DLBCL.


Assuntos
Linfoma Difuso de Grandes Células B , Fosfopiruvato Hidratase , Macrófagos Associados a Tumor , Humanos , beta Catenina , Cateninas , Glicogênio Sintase Quinase 3 beta , Glicólise , Proteínas Proto-Oncogênicas c-myc , Transdução de Sinais
14.
Med Phys ; 51(4): 2578-2588, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37966123

RESUMO

BACKGROUND: Bone metastasis is a common event in lung cancer progression. Early diagnosis of lung malignant tumor with bone metastasis is crucial for selecting effective treatment strategies. However, 14.3% of patients are still difficult to diagnose after SPECT/CT examination. PURPOSE: Machine learning analysis of [99mTc]-methylene diphosphate (99mTc-MDP) SPECT/CT scans to distinguish bone metastases from benign bone lesions in patients with lung cancer. METHODS: One hundred forty-one patients (69 with bone metastases and 72 with benign bone lesions) were randomly assigned to the training group or testing group in a 7:3 ratio. Lesions were manually delineated using ITK-SNAP, and 944 radiomics features were extracted from SPECT and CT images. The least absolute shrinkage and selection operator (LASSO) regression was used to select the radiomics features in the training set, and the single/bimodal radiomics models were established based on support vector machine (SVM). To further optimize the model, the best bimodal radiomics features were combined with clinical features to establish an integrated Radiomics-clinical model. The diagnostic performance of models was evaluated using receiver operating characteristic (ROC) curve and confusion matrix, and performance differences between models were evaluated using the Delong test. RESULTS: The optimal radiomics model comprised of structural modality (CT) and metabolic modality (SPECT), with an area under curve (AUC) of 0.919 and 0.907 for the training and testing set, respectively. The integrated model, which combined SPECT, CT, and two clinical features, exhibited satisfactory differentiation in the training and testing set, with AUC of 0.939 and 0.925, respectively. CONCLUSIONS: The machine learning can effectively differentiate between bone metastases and benign bone lesions. The Radiomics-clinical integrated model demonstrated the best performance.


Assuntos
Neoplasias Ósseas , Neoplasias Pulmonares , Humanos , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único , Neoplasias Ósseas/diagnóstico por imagem , Neoplasias Pulmonares/diagnóstico por imagem , Tomografia Computadorizada de Emissão de Fóton Único , Aprendizado de Máquina , Estudos Retrospectivos
15.
Cancer Cell Int ; 23(1): 311, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057779

RESUMO

BACKGROUND: Histone chaperones (HCs) are crucial for governing genome stability and gene expression in multiple cancers. However, the functioning of HCs in the tumor microenvironment (TME) is still not clearly understood. METHODS: Self-tested single-cell RNA-seq data derived from 6 breast cancer (BC) patients with brain and liver metastases were reanalyzed by nonnegative matrix factorization (NMF) algorithm for 36 HCs. TME subclusters were observed with BC and immunotherapy public cohorts to assess their prognosis and immune response. The biological effect of HSPA8, one of the HCs, was verified by transwell assay and wound-healing assays. RESULTS: Cells including fibroblasts, macrophages, B cells, and T cells, were classified into various subclusters based on marker genes. Additionally, it showed that HCs might be strongly associated with biological and clinical features of BC metastases, along with the pseudotime trajectory of each TME cell type. Besides, the results of bulk-seq analysis revealed that TME cell subclusters mediated by HCs distinguished significant prognostic value for BC patients and were relevant to patients' immunotherapy responses, especially for B cells and macrophages. In particular, CellChat analysis exhibited that HCs-related TME cell subclusters revealed extensive and diverse interactions with malignant cells. Finally, transwell and wound-healing assays exhibited that HSPA8 deficiency inhibited BC cell migration and invasion. CONCLUSIONS: Collectively, our study first dissected HCs-guided intercellular communication of TME that contribute to BC metastases.

16.
Cell Death Dis ; 14(12): 790, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040691

RESUMO

Aurora-A kinase interacting protein 1 (AURKAIP1) has been proved to take an intermediary role in cancer by functioning as a negative regulator of Aurora-A kinase. However, it remains unclear whether and how AURKAIP1 itself would directly engage in regulating malignancies. The expression levels of AURKAIP1 were detected in triple negative breast cancer (TNBC) by immunohistochemistry and western blots. The CCK8, colony formation assays and nude mouse model were conducted to determine cell proliferation whereas transwell and wound healing assays were performed to observe cell migration. The interaction of AURKAIP1 and DEAD-box helicase 5 (DDX5) were verified through co-immunoprecipitation and successively western blots. From the results, we found that AURKAIP1 was explicitly upregulated in TNBC, which was positively associated with tumor size, lymph node metastases, pathological stage and unfavorable prognosis. AURKAIP1 silencing markedly inhibited TNBC cell proliferation and migration in vitro and in vivo. AURKAIP1 directly interacted with and stabilized DDX5 protein by preventing ubiquitination and degradation, and DDX5 overexpression successfully reversed proliferation inhibition induced by knockdown of AURKAIP1. Consequently, AURKAIP1 silencing suppressed the activity of Wnt/ß-catenin signaling in a DDX5-dependent manner. Our study may primarily disclose the molecular mechanism by which AURKAIP1/DDX5/ß-catenin axis modulated TNBC progression, indicating that AURKAIP1 might serve as a therapeutic target as well as a TNBC-specific biomarker for prognosis.


Assuntos
Aurora Quinase A , Neoplasias de Mama Triplo Negativas , Animais , Humanos , Camundongos , Aurora Quinase A/genética , Aurora Quinase A/metabolismo , beta Catenina/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Neoplasias de Mama Triplo Negativas/patologia , Via de Sinalização Wnt
17.
Research (Wash D C) ; 6: 0289, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38111678

RESUMO

Triple-negative breast cancer (TNBC) is considered as the most hazardous subtype of breast cancer owing to its accelerated progression, enormous metastatic potential, and refractoriness to standard treatments. Long noncoding RNAs (lncRNAs) are extremely intricate in tumorigenesis and cancerous metastasis. Nonetheless, their roles in the initiation and augmentation of TNBC remain elusive. Here, in silico analysis and validation experiments were utilized to analyze the expression pattern of clinically effective lncRNAs in TNBC, among which a protective lncRNA LYPLAL1-DT was essentially curbed in TNBC samples and indicated a favorable prognosis. Gain- and loss-of-function assays elucidated that LYPLAL1-DT considerably attenuated the proliferative and metastatic properties along with epithelial-mesenchymal transition of TNBC cells. Moreover, forkhead box O1 (FOXO1) was validated to modulate the transcription of LYPLAL1-DT. Mechanistically, LYPLAL1-DT impinged on the malignancy of TNBC mainly by restraining the aberrant reactivation of the Wnt/ß-catenin signaling pathway, explicitly destabilizing and diminishing ß-catenin protein by interacting with heterogeneous nuclear ribonucleoprotein K (hnRNPK) and constricting the formation of the hnRNPK/ß-catenin complex. Conclusively, our present research revealed the anti-oncogenic effects of LYPLAL1-DT in TNBC, unraveling the molecular mechanisms of the FOXO1/LYPLAL1-DT/hnRNPK/ß-catenin signaling axis, which shed innovative light on the potential curative medicine of TNBC.

18.
J Transl Int Med ; 11(4): 372-381, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38130633

RESUMO

Circular RNAs (circRNAs) are a class of single-stranded RNAs with covalently closed structures. Owing to their not having 3' or 5' ends, circRNAs are highly durable and insusceptible to exonuclease-mediated degradation. Moreover, some circRNAs with certain structures are translatable, making them novel vaccines. Vaccines are efficient tools for immunotherapy, such as for the prevention of infectious diseases and cancer treatment. The immune system is activated during immunotherapy to fight against abnormal allies or invaders. CircRNA vaccines represent a potential new avenue in the vaccine era. Recently, several circRNA vaccines have been synthesized and tested in vitro and in vivo. Our review briefly introduces the current understanding of the biology and function of translatable circRNAs, molecular biology, synthetic methods, delivery of circRNA, and current circRNA vaccines. We also discussed the challenges and future directions in the field by summarizing the developments in circRNA vaccines in the past few years.

19.
Front Immunol ; 14: 1296857, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38022585

RESUMO

Cancer stands as a prominent contributor to global mortality rates, necessitating immediate attention toward the exploration of its treatment options. Extracellular vesicles have been investigated as a potential cancer therapy in recent years. Among them, exosomes, as cell-derived nanovesicles with functions such as immunogenicity and molecular transfer, offer new possibilities for immunotherapy of cancer. However, multiple studies have shown that exosomes of different cellular origins have different therapeutic effects. The immunomodulatory effects of exosomes include but are not limited to inhibiting or promoting the onset of immune responses, regulating the function of molecular signaling pathways, and serving as carriers of antitumor drugs. Therefore, this mini-review attempts to summarize and evaluate the development of strategies for using exosomes to package exogenous cargos to promote immunotherapy in cancer.


Assuntos
Exossomos , Neoplasias , Humanos , Exossomos/metabolismo , Neoplasias/metabolismo , Imunoterapia , Comunicação Celular
20.
Front Immunol ; 14: 1297180, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38022619

RESUMO

Background: As one of the most common malignancies worldwide, breast cancer (BC) exhibits high heterogeneity of molecular phenotypes. The evolving view regarding DNA damage repair (DDR) is that it is context-specific and heterogeneous, but its role in BC remains unclear. Methods: Multi-dimensional data of transcriptomics, genomics, and single-cell transcriptome profiling were obtained to characterize the DDR-related features of BC. We collected 276 DDR-related genes based on the Molecular Signature Database (MSigDB) database and previous studies. We acquired public datasets included the SCAN-B dataset (GEO: GSE96058), METABRIC database, and TCGA-BRCA database. Corresponding repositories such as transcriptomics, genomics, and clinical information were also downloaded. We selected scRNA-seq data from GEO: GSE176078, GSE114727, GSE161529, and GSE158724. Bulk RNA-seq data from GEO: GSE176078, GSE18728, GSE5462, GSE20181, and GSE130788 were extracted for independent analyses. Results: The DDR classification was constructed in the SCAN-B dataset (GEO: GSE96058) and METABRIC database, Among BC patients, there were two clusters with distinct clinical and molecular characteristics: the DDR-suppressed cluster and the DDR-active cluster. A superior survival rate is found for tumors in the DDR-suppressed cluster, while those with the DDR-activated cluster tend to have inferior prognoses and clinically aggressive behavior. The DDR classification was validated in the TCGA-BRCA cohort and shown similar results. We also found that two clusters have different pathway activities at the genomic level. Based on the intersection of the different expressed genes among these cohorts, we found that PRAME might play a vital role in DDR. The DDR classification was then enabled by establishing a DDR score, which was verified through multilayer cohort analysis. Furthermore, our results revealed that malignant cells contributed more to the DDR score at the single-cell level than nonmalignant cells. Particularly, immune cells with immunosuppressive properties (such as FOXP3+ CD4+ T cells) displayed higher DDR scores among those with distinguishable characteristics. Conclusion: Collectively, this study performs general analyses of DDR heterogeneity in BC and provides insight into the understanding of individualized molecular and clinicopathological mechanisms underlying unique DDR profiles.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Multiômica , Linfócitos T CD4-Positivos , Reparo do DNA/genética , Dano ao DNA , Antígenos de Neoplasias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...