Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 24(17): 5260-5269, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38639406

RESUMO

High-temperature affordable flexible polymer-based pressure sensors integrated with repeatable early fire warning service are strongly desired for harsh environmental applications, yet their creation remains challenging. This work proposed an approach for preparing such advanced integrated sensors based on silver nanoparticles and an ammonium polyphosphate (APP)-modified laminar-structured bulk wood sponge (APP/Ag@WS). Such integrated sensors demonstrated excellent fire warning performance, including a short response time (minimum of 0.44 s), a long-lasting alarm time (>750 s), and reliable repeatability. Moreover, it achieved high-temperature affordable flexible pressure sensing that exhibited an almost unimpaired working range of 0-7.5 kPa and a higher sensitivity (in the low-pressure range, maximum to 226.03 kPa-1) after fire. The high stability was attributed to reliable structural elasticity, and the wood-derived amorphous carbon is capable of repeatable fire warnings. Finally, a Ag@APP/WS-based wireless fire alarm system that realized reliable house fire accident detection was demonstrated, showing great promise for smart firefighting application.

2.
Int J Biol Macromol ; 253(Pt 2): 126752, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37678694

RESUMO

Herein, a novel magnetic adsorbent (BC/AA/MN@Fe3O4) was successfully prepared from waste bamboo fiber tissue and montmorillonite, and subsequently applied for the highly selective removal of malachite green (MG, removal efficiency = 97.3 %) from the mixed dye solution of MG with methyl orange (MO, removal efficiency = 4.5 %). The magnetic adsorbent has a high porosity with abundant mesopores. In the single dye MG solution, the adsorbent could effectively remove MG over a wide pH range from 4 to 10, and the maximum adsorption capacity (qmax) was 2282.3 mg/g. Moreover, the magnetic adsorbent could remove MG from various solutions including mixed dye solution, high salinity solution, and real river water dye solution. The thermodynamic results proved that the adsorption process of MG was spontaneous and endothermic. The adsorption of MG was due to the comprehensive effects of electrostatic attraction, hydrogen bonding interactions and ions exchange, between the adsorbent and MG. Furthermore, the BC/AA/MN@Fe3O4 exhibited an excellent reusability with adsorption efficiency above 53.4 % after five consecutive cycles. Therefore, the prepared magnetic nanocellulose-based adsorbent was expected to be a promising material for highly selective adsorption and separation of MG from mixed dye solution.


Assuntos
Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Corantes de Rosanilina , Termodinâmica , Adsorção , Fenômenos Magnéticos , Concentração de Íons de Hidrogênio , Cinética
3.
Int J Biol Macromol ; 230: 123251, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36639071

RESUMO

Supramolecular structure of cellulosic materials from microwave treatment were throughly investigated for production of lignin-containing nanocellulose. The results revealed that both the intermolecular and intramolecular hydrogen bonds were altered by microwave irradiation. Cellulose Iß was the main component in microwave treated bamboo (MTB) with smaller interplanar spacing, and the cellulose molecules were loosely connected resulting in a loose structure. Thereafter, MTB was used to produce lignin-containing nanocellulose by using oxalic acid dihydrate (OAD) to test the feasibility on its efficiency. The chemical consumed for the preparation of lignin-containing nanocellulose (LCN) with a comparable yield (68.08-82.33 %) from MTB was merely 1/10 that from conventional cellulosic materials, indicating the supramolecular structural changes of bamboo cellulose induced by microwave treatment provided suitable conditions for the subsequent hydrolysis of OAD to prepare LCN. The LCN was further added into the polyvinyl alcohol (PVA) matrix endowed excellent UV shielding property and thermal stability for the PVA/LCN films. This study was aimed to provide an environmentally friendly method on the production and application of LCN from bamboo by employing microwave treatment from the perspective of supramolecular level.


Assuntos
Lignina , Micro-Ondas , Lignina/química , Celulose/química , Hidrólise , Ácido Oxálico , Álcool de Polivinil/química
4.
Molecules ; 27(22)2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36431903

RESUMO

Chemical components with anti-oxidant, anti-inflammatory, and anti-cancer properties extracted from Alnus bark and leaves have been extensively studied. However, less attention has been paid to extractives from Alnus pods, which are mostly treated as waste. Here, extractives of Alnus cremastogyne pods from 12 provenances in Sichuan Province were studied for high value-added utilization of Alnus waste. The extractives were analyzed by Gas Chromatography-Mass Spectrometer (GC-MS), Ultraviolet-visible spectroscopy (UV-Vis spectra), and 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging activity. A total of 58, 49, and 51 chemical components were found when the organic solvents of ethanol, petroleum ether, and ethyl acetate were used to collect extractives, respectively. These chemical components including Phytol, CIS-5,8,11,14,17-eicosapentaenoic acid, Germacrene D, Lupeol, and ß-sitosterol, etc., have wide applications in the fields of pharmacy and cosmetics. Moreover, it was also found that extractives in ethanol and ethyl acetate had impressive UV resistance, especially for UV-C and UV-B blocking. The results showed that the maximum block ratio towards UV-C and UV-B could reach 99%. In addition, the ethanol extract showed good anti-oxidant activity with a maximum free radical scavenging rate of 96.19%. This comprehensive and systematic study on extractives from Alnus cremastogyne pods promotes the development of high-value utilization of Alnus components.


Assuntos
Alnus , Antioxidantes/farmacologia , Antioxidantes/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Anti-Inflamatórios , Solventes , Etanol
5.
Int J Biol Macromol ; 221: 224-237, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36084868

RESUMO

Since natural cellulose is mostly cellulose I and has a fibrous form, most cellulose-based adsorbents are fibrous/rod-shaped and exhibit the cellulose I crystal structure. This study reports a cellulose II-based spherical nanoparticle microcluster adsorbent (SNMA), synthesized from biomass by a bottom-up approach, for removing toxic hexavalent chromium (Cr(VI)). The basic structure of SNMA was investigated. Notably, the prepared adsorbent was a microcluster composed of spherical nanoparticles, while exhibiting cellulose II crystal structure, resulting in higher thermal stability and significantly enhanced adsorption performance. The adsorption process and mechanism of SNMA on Cr(VI) were studied in detail. The SNMA achieved a high adsorption capacity (225.94 mg/g) and receptor site density. The SNMA is expected to be used as a bio-based spherical nanoparticle microcluster adsorbent platform for the adsorption of different toxic substances by changing the surface functional groups of its components, spherical nanoparticles.


Assuntos
Nanopartículas , Poluentes Químicos da Água , Celulose/química , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio , Cromo/química , Adsorção , Cinética
6.
Int J Biol Macromol ; 207: 917-926, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35364193

RESUMO

Lignin-containing bamboo cellulose, fractionated from a pilot-scale microwave liquefaction of bamboo was dissolved in tetrabutylammonium acetate/dimethyl sulfoxide (TBAA/DMSO) for the fabrication of highly flexible, transparent and UV-blocking films. Tea polyphenol (TP) or citric acid (CA) was added during the dissolving process in order to modify the film's properties. The results showed that the addition of TP obviously improved the elongation at break (triple that of the control) and UV-blocking ability of the films. Both the addition of TP and CA could increase the water contact angle of the films. The films incorporated with TP and CA were much more thermal stable than previously reported similar films. The proposed film fabrication mechanism revealed that stable hydrogen bonds formed between the lignin-cellulose matrix and TP/CA, resulting in the enhancement on the properties of the films. This present study showed that lignin-containing cellulose with the incorporation of TP/CA had great potential in the preparation of films in place of plastic.


Assuntos
Celulose , Lignina , Celulose/química , Ácido Cítrico , Lignina/química , Polifenóis/química , Chá
7.
Sci Total Environ ; 814: 152728, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-34973999

RESUMO

The Elemental defense hypothesis suggested that metal accumulation in plant tissues could serve as direct defense to reduce herbivore feeding preference as metals are toxic to phytophagous insects. However, the indirectly defensive role of heavy metals on host plant odor selection and oviposition preference of leaf herbivores through the changes in leaf volatile organic compounds (VOCs) is still unknown. In this study, we used a local woody plant species, Populus yunnanensis, to investigate whether soil cadmium (Cd) stress could affect plant VOC production and whether Cd-mediated changes in leaf VOC emissions will further influence the host plant odor and oviposition preferences of female adults of a specialist and a generalist herbivore species. The results clearly showed that the soil Cd stress could prominently induce leaf total VOC emissions of P. yunnanensis and such induction was positively correlated with leaf Cd accumulation. Herbivore olfactometer bioassays further demonstrated that the VOCs released by P. yunnanensis under Cd exposure are far less attractive to both of the specialist and generalist female adults compared to control plants, leading to significant reduction in oviposition on Cd-treated plants. Moreover, the host plant odor selection and oviposition preference of the two herbivore species were all negatively correlated with leaf total VOC emissions, which confirmed the defensive role of Cd-induced VOCs for deterring the female insects. The result will extend the existing knowledge of the Elemental defense hypothesis and provide new insight into predicting the herbivore damage level of poplar species that naturally occurred in metal-polluted habitats.


Assuntos
Herbivoria , Compostos Orgânicos Voláteis , Cádmio/toxicidade , Odorantes , Oviposição , Folhas de Planta , Solo
8.
ACS Omega ; 6(39): 25702-25709, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34632226

RESUMO

Almond shell-modified urea-formaldehyde resins (AUF) were prepared in this study. The optimal addition amount of almond shells was selected by formaldehyde emission and wet shear strength. The activation energy (E a) values at different conversion rates and the reaction kinetics were estimated based on the Flynn-Wall-Ozawa method. The results indicated that almond shells can significantly reduce the formaldehyde emission and increase wet shear strength and thermal stability of the urea-formaldehyde resin adhesive. The optimal addition of almond shells is 3 wt %.

9.
Sci Total Environ ; 796: 148925, 2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34273840

RESUMO

How stoichiometry in different ecosystem components responds to long-term nitrogen (N) addition is crucial for understanding within-ecosystem biogeochemistry cycling processes in the context of global change. To explore the effects of long-term N addition on nutrient stoichiometry in soil and plant components in forest ecosystem, a 10-year N addition experiment using ammonium nitrate (NH4NO3) was conducted in a bamboo forest in the Rainy Zone of West China, where the background N deposition is the highest in the world. Four N treatment levels (+0, +50, +150, +300 kg N ha-1 yr-1) (CK, LN, MN, HN) were applied monthly since November 2007, and then, the C:N:P stoichiometry of soil, microbial biomass, and enzymes in rhizosphere soil and bulk soil, and plant organs were measured. N addition decreased the stoichiometry of C:N:P of soil, microbial biomass, and enzymes. Soil C:N:P change under N addition treatments was stronger in bulk soil, while C:N:P changes for microbial biomass and enzyme activity were significant in rhizosphere soil. N addition significantly decreased TOC in bulk soil. Changes in MBC:MBN:MBP in rhizosphere and bulk soil were mainly caused by MBN and MBP, and MBP performance was consistent with that of AP. The main variable leading to the change of enzyme C:N:P in rhizosphere soil was BG and AP, and in bulk soil was LAP + NAG activity. Plant root C:P and N:P increased with N addition, while those for leaves and twigs did not. N addition significantly reduced the pH of both rhizosphere and bulk soils. These results suggest that the stoichiometry responses of rhizosphere and bulk soils were different due to the influence of plant roots. Soil acidification, enhanced aluminum toxicity potential, decreased root biomass and enhanced microbial P limitation caused by N addition were the important mechanisms that promoted stoichiometry changes in this ecosystem. Under the chronic input of N deposition, the stoichiometry between plant and soil evolved in different directions, which may lead to the decoupling of plants from soils.


Assuntos
Nitrogênio , Solo , Biomassa , Carbono/análise , China , Ecossistema , Florestas , Nitrogênio/análise , Rizosfera , Microbiologia do Solo
10.
Ecotoxicol Environ Saf ; 208: 111688, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33396020

RESUMO

Elemental defense hypothesis suggests that toxic metals accumulated in plant tissues could enhance plant defense against herbivores and pathogens. Since over-accumulation of metals in plant organs will pose negative effects on plant health, it is necessary to find a way to alleviate metal-induced toxicity in plants while keeping or even improving plant resistance. Exogenous nitrogen (N) application was reported to have such alleviation effect while stimulating metal accumulation in plant tissues. In this study, we examined whether soil N addition in three different doses to a poplar species under cadmium (Cd) stress can simultaneously improve plant growth and resistance to four herbivorous insects and a leaf pathogen. The results showed that N application to Cd-amended soil prominently enhanced plant growth and leaf Cd accumulation. While N addition in three doses all remarkably reduced herbivore growth than control plants, only the highest N dose exerted stronger inhibition than the sole Cd-treated plants. In the paired-choice experiment, plants supplied with the highest N dose showed an enhanced deterrent effect on herbivore preference than plants exposed to sole Cd. Furthermore, plant resistance to the leaf pathogen infection was strongly enhanced as the levels of N addition increased. Leaf sugar and three main defensive chemicals were not affected by N application implied that such enhanced effect of N on plant resistance was due to increased leaf Cd accumulation. Our results suggested that the application of exogenous N over a certain amount could enhance the resistance of Cd-treated plants to leaf herbivory and pathogen infection.


Assuntos
Cádmio/toxicidade , Nitrogênio/farmacologia , Folhas de Planta/efeitos dos fármacos , Populus/efeitos dos fármacos , Poluentes do Solo/toxicidade , Animais , Cádmio/metabolismo , Herbivoria/efeitos dos fármacos , Lepidópteros/efeitos dos fármacos , Pestalotiopsis/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/microbiologia , Populus/crescimento & desenvolvimento , Populus/microbiologia , Solo/química , Poluentes do Solo/metabolismo
11.
ACS Omega ; 5(33): 20943-20952, 2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32875229

RESUMO

Kinetics and thermogravimetric analysis of recent Phoebe zhennan wood (RZ) and ancient buried P. zhennan wood (ABZ) were investigated under a nitrogen atmosphere at different heating rates of 5, 10, 15, and 20 K/min. The activation energy values were estimated based on the Flynn-Wall-Ozawa model-free method, and then, the Coats-Redfern model-fitting method was used to predict the reaction mechanism. The best model of RZ for regions 1 and 2 was based on the diffusional and reaction order (second-order) mechanism, respectively, while a diffusional (Jander equation) mechanism is the best model for ABZ. The change in enthalpy and activation energy of the RZ was lower than that of the ABZ at different conversion rates. When the conversion rate was less than 0.4, the RZ may require lower thermal decomposition reaction energy, but the overall energy of thermal decomposition reactions and the degree of disorder was not much different.

12.
Molecules ; 25(5)2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32143361

RESUMO

In this work, ethyl acetate (EA) and trichloromethane (TR) extracts were extracted from Phoebe zhennan wood residues and the extracts were then applied to the preparation of UV shielding films (UV-SF). The results revealed that substances including olefins, phenols and alcohols were found in both EA and TR extracts, accounting for about 45% of all the detected substances. The two extracts had similar thermal stability and both had strong UV shielding ability. When the relative percentage of the extract is 1 wt% in solution, the extract solution almost blocked 100% of the UV-B (280-315 nm), and UV-A (315-400 nm). Two kinds of UV-SF were successfully prepared by adding the two extracts into polylactic acid (PLA) matrix. The UV-SF with the addition of 24 wt% of the extractive blocked 100% of the UV-B (280-315 nm) and more than 80% of the UV-A (315-400 nm). Moreover, the UV shielding performance of the UV-SF was still stable even after strong UV irradiation. Though the addition of extracts could somewhat decrease the thermal stability of the film, its effect on the end-use of the film was ignorable. EA extracts had less effect on the tensile properties of the films than TR extracts as the content of the extract reached 18%. The results of this study could provide fundamental information on the potential utilization of the extracts from Phoebe zhennan wood residues on the preparation of biobased UV shielding materials.


Assuntos
Acetatos/química , Clorofórmio/química , Extratos Vegetais/química , Raios Ultravioleta , Madeira/química
13.
Nat Prod Res ; 34(6): 876-879, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30488722

RESUMO

The chemical composition of essential oils (EO) from bark and leaf of P. zhennan was identified by GC-MS. The compounds of α-calacorene, τ-cadinol, ß-eudesmol and d-cadinene were found in the essential oils from both bark and leaf. The UV-Vis spectra results indicated the EO could completely absorbed the UV light at the wavelength range of 200-370 nm, revealing that EO had great potential as additives for manufacturing UV light blocking products. The radical DPPH scavenging activity assay showed that both the bark and leaf EO possessed strong DPPH radical scavenging activity of 90.25% and 82.10% respectively, which provides an important theoretical guiding in exploiting the value of P. zhennan bark and leaf.[Formula: see text].


Assuntos
Antioxidantes/isolamento & purificação , Lauraceae/química , Óleos Voláteis/química , Antioxidantes/farmacologia , Sequestradores de Radicais Livres , Cromatografia Gasosa-Espectrometria de Massas , Óleos Voláteis/farmacologia , Casca de Planta/química , Extratos Vegetais/química , Folhas de Planta/química , Análise Espectral , Terpenos/análise , Raios Ultravioleta
14.
Int J Biol Macromol ; 119: 582-587, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30071222

RESUMO

In this study, diethyl ether extractives were isolated from Phoebe zhennan wood and then added into PLA matrix for the preparation of UV protective films (UV-PF). The results revealed that the diethyl ether extractives had good compatibility with PLA. The prepared UV-PF with the addition of 24 wt% extractives showed complete absorption of UV-C (200-280 nm) and UV-B (280-315 nm) and more than 90% absorption of UV-A (315-400 nm), indicating the addition of extractives into PLA contributed to the super UV resistant ability of the PLA based films. The UV-PF still exhibited excellent UV absorbability after strong UV light irradiation. The differential Scanning Calorimetry (DSC) analysis of the films showed that the UV-PF had relatively low thermal degradation temperature compared to the neat PLA films (PF), while the UV-PF showed stronger tensile strength with comparison to that of the PF. The results on the chemical composition analysis of the diethyl ether extractives revealed that the UV absorbability of the UV-PF may own to the benzene structure, CO bonds, CC bonds in the constituents of the extractives, which all have strong absorption in the near UV-region (200-400 nm).


Assuntos
Lauraceae/química , Extratos Vegetais/química , Poliésteres/química , Protetores contra Radiação/química , Protetores contra Radiação/farmacologia , Raios Ultravioleta/efeitos adversos , Estabilidade de Medicamentos , Embalagem de Alimentos , Temperatura , Resistência à Tração
15.
Carbohydr Polym ; 151: 725-734, 2016 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-27474619

RESUMO

Cellulose nanofibers were successfully isolated from bamboo using microwave liquefaction combined with chemical treatment and ultrasonic nanofibrillation processes. The microwave liquefaction could eliminate almost all the lignin in bamboo, resulting in high cellulose content residues within 7min, and the cellulose enriched residues could be readily purified by subsequent chemical treatments with lower chemical charging and quickly. The results of wet chemistry analyses, SEM images, and FTIR and X-ray spectra indicated the combination of microwave liquefaction and chemical treatment was significantly efficient in removing non-cellulosic compounds. Ultrasonication was used to separate the nanofibrils from the purified residues to extract nanofibers. The TEM images confirmed the presence of elementary fibrils, nano-sized fibril bundles, and aggregated fibril bundles. As evidenced by the TGA analysis, cellulose nanofibers isolated by this novel technique had high thermal stability indicating that the isolated nanofibers could possibly be applied as reinforcing elements in biomaterials.


Assuntos
Celulose/química , Micro-Ondas , Nanofibras/química , Poaceae/química , Sonicação
16.
Materials (Basel) ; 8(12): 8496-8509, 2015 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-28793725

RESUMO

Bagasse flour (BF) was liquefied using bi-component polyhydric alcohol (PA) as a solvent and phosphoric acid as a catalyst in a microwave reactor. The effect of BF to solvent ratio and reaction temperatures on the liquefaction extent and characteristics of liquefied products were evaluated. The results revealed that almost 75% of the raw bagasse was converted into liquid products within 9 min at 150 °C with a BF to solvent ratio of 1/4. The hydroxyl and acid values of the liquefied bagasse (LB) varied with the liquefied conditions. High reaction temperature combining with low BF to solvent ratio resulted in a low hydroxyl number for the LB. The molecular weight and polydispersity of the LB from reactions of 150 °C was lower compared to that from 125 °C. Rigid polyurethane (PU) foams were prepared from LB and methylene diphenyl diisocyanate (MDI), and the structural, mechanical and thermal properties of the PU foam were evaluated. The PU foams prepared using the LB from high reaction temperature showed better physical and mechanical performance in comparison to those from low reaction temperature. The amount of PA in the LB has the ability of increasing thermal stability of LB-PU foams. The results in this study may provide fundamental information on integrated utilizations of sugarcane bagasse via microwave liquefaction process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...