Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2308783, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509587

RESUMO

As the population ages, the worldwide prevalence of Alzheimer's disease (AD) as the most common dementia in the elderly is increasing dramatically. However, a long-term challenge is to achieve rapid and accurate early diagnosis of AD by detecting hallmarks such as amyloid beta (Aß42). Here, a multi-channel microfluidic-based plasmonic fiber-optic biosensing platform is established for simultaneous detection and differentiation of multiple AD biomarkers. The platform is based on a gold-coated, highly-tilted fiber Bragg grating (TFBG) and a custom-developed microfluidics. TFBG excites a high-density, narrow-cladding-mode spectral comb that overlaps with the broad absorption of surface plasmons for high-precision interrogation, enabling ultrasensitive monitoring of analytes. In situ detection and in-parallel discrimination of different forms of Aß42 in cerebrospinal fluid (CSF) are successfully demonstrated with a detection of limit in the range of ≈30-170 pg mL-1, which is one order of magnitude below the clinical cut-off level in AD onset, providing high detection sensitivity for early diagnosis of AD. The integration of the TFBG sensor with multi-channel microfluidics enables simultaneous detection of multiple biomarkers using sub-µL sample volumes, as well as combining initial binding rate and real-time response time to differentiate between multiple biomarkers in terms of binding kinetics. With the advantages of multi-parameter, low consumption, and highly sensitive detection, the sensor represents an urgently needed potentials for large-scale diagnosis of diseases at early stage.

2.
Opt Lett ; 49(3): 650-653, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300081

RESUMO

We propose a compact fiber-optic sensor for in situ and continuous turbidity monitoring, based on surface optical scattering of polarized evanescent waves from targeted particles. The sensor is composed of a tilted fiber Bragg grating (TFBG) packaged inside a microfluidic capillary. The transmission spectrum of the TFBG provides a fine comb of narrow cladding resonances that are highly sensitive to the turbidity due to the localized light scattering of polarized evanescent waves from the microparticles near the fiber surface (as opposed to traditional bulk/volumetric turbidity measurement). We also propose a transmission spectral area interrogation method and quantify the repeatable correlation between the surface turbidity and the optical spectral area response. We show that the maximum sensitive turbidity response is achieved when the wavelength of the sensing cladding resonance matches the size of surrounding solid particles.

3.
Proc Natl Acad Sci U S A ; 120(45): e2304179120, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37903265

RESUMO

The unexpected discovery of hot Jupiters challenged the classical theory of planet formation inspired by our solar system. Until now, the origin and evolution of hot Jupiters are still uncertain. Determining their age distribution and temporal evolution can provide more clues into the mechanism of their formation and subsequent evolution. Using a sample of 383 giant planets around Sun-like stars collected from the kinematic catalogs of the Planets Across Space and Time project, we find that hot Jupiters are preferentially hosted by relatively younger stars in the Galactic thin disk. We subsequently find that the frequency of hot Jupiters declines with age as [Formula: see text]. In contrast, the frequency of warm/cold Jupiters shows no significant dependence on age. Such a trend is expected from the tidal evolution of hot Jupiters' orbits, and our result offers supporting evidence using a large sample. We also perform a joint analysis on the planet frequencies in the stellar age-metallicity plane. The result suggests that the frequencies of hot Jupiters and warm/cold Jupiters, after removing the age dependence are both correlated with stellar metallicities as [Formula: see text] and [Formula: see text], respectively. Moreover, we show that the above correlations can explain the bulk of the discrepancy in hot Jupiter frequencies inferred from the transit and radial velocity (RV) surveys, given that RV targets tend to be more metal-rich and younger than transits.

4.
Materials (Basel) ; 16(17)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37687462

RESUMO

In the past decade, in the context of the carbon peaking and carbon neutrality era, the rapid development of new energy vehicles has led to higher requirements for the performance of strike forces such as battery cycle life, energy density, and cost. Lithium-ion batteries have gradually become mainstream in electric vehicle power batteries due to their excellent energy density, rate performance, and cycle life. At present, the most widely used cathode materials for power batteries are lithium iron phosphate (LFP) and LixNiyMnzCo1-y-zO2 cathodes (NCM). However, these materials exhibit bottlenecks that limit the improvement and promotion of power battery performance. In this review, the performance characteristics, cycle life attenuation mechanism (including structural damage, gas generation, and active lithium loss, etc.), and improvement methods (including surface coating and element-doping modification) of LFP and NCM batteries are reviewed. Finally, the development prospects of this field are proposed.

5.
Innovation (Camb) ; 3(2): 100224, 2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35340396

RESUMO

The Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST), also known as the Guoshoujing Telescope, is a major national scientific facility for astronomical research located in Xinglong, China. Beginning with a pilot survey in 2011, LAMOST has been surveying the night sky for more than 10 years. The LAMOST survey covers various objects in the Universe, from normal stars to peculiar ones, from the Milky Way to other galaxies, and from stellar black holes and their companions to quasars that ignite ancient galaxies. Until the latest data release 8, the LAMOST survey has released spectra for more than 10 million stars, ∼220,000 galaxies, and ∼71,000 quasars. With this largest celestial spectra database ever constructed, LAMOST has helped astronomers to deepen their understanding of the Universe, especially for our Milky Way galaxy and the millions of stars within it. In this article, we briefly review the characteristics, observations, and scientific achievements of LAMOST. In particular, we show how astrophysical knowledge about the Milky Way has been improved by LAMOST data.

6.
Nat Nanotechnol ; 16(2): 153-158, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33199884

RESUMO

Traditional cooling systems consume tremendous amounts of energy and thus aggravate the greenhouse effect1,2. Passive radiative cooling, dissipating an object's heat through an atmospheric transparency window (8-13 µm) to outer space without any energy consumption, has attracted much attention3-9. The unique feature of radiative cooling lies in the high emissivity in the atmospheric transparency window through which heat can be dissipated to the universe. Therefore, for achieving high cooling performance, the design and fabrication of selective emitters, with emission strongly dominant in the transparency window, is of essential importance, as such spectral selection suppresses parasitic absorption from the surrounding thermal radiation. Recently, various materials and structures with tailored spectrum responses have been investigated to achieve the effect of daytime radiative cooling6-8,10-15. However, most of the radiative cooling materials reported possess broad-band absorption/emission covering the whole mid-infrared wavelength11-15. Here we demonstrate that a hierarchically designed polymer nanofibre-based film, produced by a scalable electrostatic spinning process, enables selective mid-infrared emission, effective sunlight reflection and therefore excellent all-day radiative cooling performance. Specifically, the C-O-C (1,260-1,110 cm-1) and C-OH (1,239-1,030 cm-1) bonding endows the selective emissivity of 78% in 8-13 µm wavelength range, and the design of nanofibres with a controlled diameter allows for a high reflectivity of 96.3% in 0.3-2.5 µm wavelength range. As a result, we observe ~3 °C cooling improvement of this selective thermal emitter as compared to that of a non-selective emitter at night, and 5 °C sub-ambient cooling under sunlight. The impact of this hierarchically designed selective thermal emitter on alleviating global warming and temperature regulating an Earth-like planet is also analysed, with a significant advantage demonstrated. With its excellent cooling performance and a scalable process, this hierarchically designed selective thermal emitter opens a new pathway towards large-scale applications of all-day radiative cooling materials.

7.
ACS Appl Mater Interfaces ; 11(13): 12594-12604, 2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30860354

RESUMO

The Ni-rich LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode has attracted great interest owing to its low cost, high capacity, and energy density. Nevertheless, rapid capacity fading is a critical problem because of direct contact of NCM811 with electrolytes and hence restrains its wide applications. To prevent the direct contact, the surface inert layer coating becomes a feasible strategy to tackle this problem. However, to achieve a homogeneous surface coating is very challenging. Considering the bonding effect between NCM811, polyvinylpyrrolidone (PVP), and polyaniline (PANI), in this work, we use PVP as an inductive agent to controllably coat a uniform conductive PANI layer on NCM811 (NCM811@PANI-PVP). The coated PANI layer not only serves as a rapid channel for electron conduction, but also prohibits direct contact of the electrode with the electrolyte to effectively hinder side reaction. NCM811@PANI-PVP thus exhibits excellent cyclability (88.7% after 100 cycles at 200 mA g-1) and great rate performance (152 mA h g-1 at 1000 mA g-1). In situ X-ray diffraction and in situ Raman are performed to investigate the charge-discharge mechanism and the cyclability of NCM811@PANI-PVP upon electrochemical reaction. This surfactant-modulated surface uniform coating strategy offers a new modification approach to stabilize Ni-rich cathode materials for lithium-ion batteries.

8.
ACS Appl Mater Interfaces ; 11(1): 930-939, 2019 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-30550259

RESUMO

Carbon materials are most promising candidates for potassium-ion battery (PIB) anodes because of their high electrical conductivities, rational potassium storage capabilities, and low costs. However, the large volume change during the K-ion insertion/extraction and the sluggish kinetics of K-ion diffusion inhibit the development of carbon-based materials for PIBs. Here, under the guidance of density functional theory, N/P-codoped ultrafine (≤20 nm) carbon nanoparticles (NP-CNPs) with an expanded interlayer distance, improved electrical conductivity, shortened diffusion distance of K ions, and promoted adsorption capability toward K ions are synthesized through a facile solvent-free method as a high-performance anode material for PIBs. The NP-CNPs show a high capacity of 270 mA h g-1 at 0.2 A g-1, a remarkable rate capability of 157 mA h g-1 at an extremely high rate of 5.0 A g-1, and an ultralong cycle life with a high capacity of 190 mA h g-1 and a retention of 86.4% at 1.0 A g-1 after 4000 cycles. The potassium storage mechanism and low volume expansion for NP-CNPs are revealed through cyclic voltammetry, in situ Raman, and ex situ XRD. This work paves a new way to design and fabricate carbon-based nanostructures with high reversible capacity, great rate capability, and stable long-term performance.

9.
Proc Natl Acad Sci U S A ; 115(2): 266-271, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29284755

RESUMO

We discover a population of short-period, Neptune-size planets sharing key similarities with hot Jupiters: both populations are preferentially hosted by metal-rich stars, and both are preferentially found in Kepler systems with single-transiting planets. We use accurate Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) Data Release 4 (DR4) stellar parameters for main-sequence stars to study the distributions of short-period [Formula: see text] Kepler planets as a function of host star metallicity. The radius distribution of planets around metal-rich stars is more "puffed up" compared with that around metal-poor hosts. In two period-radius regimes, planets preferentially reside around metal-rich stars, while there are hardly any planets around metal-poor stars. One is the well-known hot Jupiters, and the other one is a population of Neptune-size planets ([Formula: see text]), dubbed "Hoptunes." Also like hot Jupiters, Hoptunes occur more frequently in systems with single-transiting planets although the fraction of Hoptunes occurring in multiples is larger than that of hot Jupiters. About [Formula: see text] of solar-type stars host Hoptunes, and the frequencies of Hoptunes and hot Jupiters increase with consistent trends as a function of [Fe/H]. In the planet radius distribution, hot Jupiters and Hoptunes are separated by a "valley" at approximately Saturn size (in the range of [Formula: see text]), and this "hot-Saturn valley" represents approximately an order-of-magnitude decrease in planet frequency compared with hot Jupiters and Hoptunes. The empirical "kinship" between Hoptunes and hot Jupiters suggests likely common processes (migration and/or formation) responsible for their existence.

10.
Proc Natl Acad Sci U S A ; 113(41): 11431-11435, 2016 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-27671635

RESUMO

The nearly circular (mean eccentricity [Formula: see text]) and coplanar (mean mutual inclination [Formula: see text]) orbits of the solar system planets motivated Kant and Laplace to hypothesize that planets are formed in disks, which has developed into the widely accepted theory of planet formation. The first several hundred extrasolar planets (mostly Jovian) discovered using the radial velocity (RV) technique are commonly on eccentric orbits ([Formula: see text]). This raises a fundamental question: Are the solar system and its formation special? The Kepler mission has found thousands of transiting planets dominated by sub-Neptunes, but most of their orbital eccentricities remain unknown. By using the precise spectroscopic host star parameters from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) observations, we measure the eccentricity distributions for a large (698) and homogeneous Kepler planet sample with transit duration statistics. Nearly half of the planets are in systems with single transiting planets (singles), whereas the other half are multiple transiting planets (multiples). We find an eccentricity dichotomy: on average, Kepler singles are on eccentric orbits with [Formula: see text] 0.3, whereas the multiples are on nearly circular [Formula: see text] and coplanar [Formula: see text] degree) orbits similar to those of the solar system planets. Our results are consistent with previous studies of smaller samples and individual systems. We also show that Kepler multiples and solar system objects follow a common relation [[Formula: see text](1-2)[Formula: see text]] between mean eccentricities and mutual inclinations. The prevalence of circular orbits and the common relation may imply that the solar system is not so atypical in the galaxy after all.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...