Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 14(11)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38003029

RESUMO

Anther culture (AC) is a valuable technique in rice breeding. However, the genetic mechanisms underlying anther culturability remain elusive, which has hindered its widespread adoption in rice breeding programs. During AC, microspores carrying favorable alleles for AC are selectively regenerated, leading to segregation distortion (SD) of chromosomal regions linked to these alleles in the doubled haploid (DH) population. Using the AC method, a DH population was generated from the japonica hybrid rice Shenyou 26. A genetic map consisting of 470 SNPs was constructed using this DH population, and SD analysis was performed at both the single- and two-locus levels to dissect the genetic basis underlying anther culturability. Five segregation distortion loci (SDLs) potentially linked to anther culturability were identified. Among these, SDL5 exhibited an overrepresentation of alleles from the female parent, while SDL1.1, SDL1.2, SDL2, and SDL7 displayed an overrepresentation of alleles from the male parent. Furthermore, six pairs of epistatic interactions (EPIs) that influenced two-locus SDs in the DH population were discovered. A cluster of genetic loci, associated with EPI-1, EPI-3, EPI-4, and EPI-5, overlapped with SDL1.1, indicating that the SDL1.1 locus may play a role in regulating anther culturability via both additive and epistatic mechanisms. These findings provide valuable insights into the genetic control of anther culturability in rice and lay the foundation for future research focused on identifying the causal genes associated with anther culturability.


Assuntos
Oryza , Mapeamento Cromossômico , Oryza/genética , Haploidia , Melhoramento Vegetal , Loci Gênicos
2.
Front Bioeng Biotechnol ; 10: 912959, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35845427

RESUMO

Aphelenchoides besseyi (A. besseyi), a seed-borne parasitic nematode, is the causal agent of rice white tip disease (RWTD), which may result in a drastic loss of rice yield. Seed treatments are currently considered to be the most effective means of preventing the spread of RWTD. Therefore, the rapid, highly specific, and accurate detection of A. besseyi from rice seeds is crucial for the surveillance, prevention, and control of RWTD. Here, we describe a novel detection assay that combines recombinase polymerase amplification (RPA) and CRISPR/Cas12a to detect A. besseyi (termed RPA-Cas12a-Ab), with a low limit of detection (LOD) of 1 copy/µl of plasmid or 1:107 diluted DNA extracted from individual nematodes. To improve the user-friendliness, lateral flow strip assay (LFA) was adopted to visualize the detection result. The LOD of the RPA-Cas12a-Ab LFA assay was 1,000 copies/µl plasmid or 1:10 diluted DNA extracted from individual nematodes. The assay developed in this study was able to identify A. besseyi in 45 min with high accuracy and sensitivity without cross reaction with three closely related non-A. besseyi species. Thus, RPA-Cas12a-Ab is a rapid, sensitive, and specific detection system that requires no sophisticated equipment and shows promise for on-site surveillance of A. besseyi.

3.
Plant Cell Environ ; 45(2): 542-555, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34866195

RESUMO

Clathrin-mediated vesicle trafficking (CMVT) is a fundamental process in all eukaryotic species, and indispensable to organism's growth and development. Recently, it has been suggested that CMVT also plays important roles in the regulation of plant immunity. However, the molecular link between CMVT and plant immunity is largely unknown. SCY1-LIKE2 (SCYL2) is evolutionally conserved among the eukaryote species. Loss-of-function of SCYL2 in Arabidopsis led to severe growth defects. Here, we show that mutation of OsSCYL2 in rice gave rise to a novel phenotype-hypersensitive response-like (HR) cell death in a light-dependent manner. Although mutants of OsSCYL2 showed additional defects in the photosynthetic system, they exhibited enhanced resistance to bacterial pathogens. Subcellular localisation showed that OsSCYL2 localized at Golgi, trans-Golgi network and prevacuolar compartment. OsSCYL2 interacted with OsSPL28, subunit of a clathrin-associated adaptor protein that is known to regulate HR-like cell death in rice. We further showed that OsSCYL2-OsSPL28 interaction is mediated by OsCHC1. Collectively, we characterized a novel component of the CMVT pathway in the regulation of plant immunity. Our work also revealed unidentified new functions of the very conserved SCYL2. It thus may provide new breeding targets to achieve both high yield and enhanced resistance in crops.


Assuntos
Vesículas Revestidas por Clatrina/metabolismo , Oryza/imunologia , Imunidade Vegetal/genética , Proteínas de Plantas/genética , Oryza/genética , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...