Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Virol ; 96(2): e0176821, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-34730400

RESUMO

Classical swine fever (CSF) is an economically important disease of pigs caused by classical swine fever virus (CSFV). The live attenuated vaccine C-strain (also called HCLV strain) against CSF was produced by multiple passages of a highly virulent strain in rabbits. However, the molecular determinants for its attenuation and protection remain unclear. In this study, we identified a unique glycosylation at position 986 (986NYT988) on the E2 glycoprotein Domain IV of C-strain but not (986NYA988) the highly virulent CSFV Shimen strain. We evaluated the infectivity, virulence, and protective efficacy of the C-strain-based mutant rHCLV-T988A lacking the glycosylation and Shimen strain mutant rShimen-A988T acquiring an additional glycosylation at position 986. rShimen-A988T showed a significantly decreased viral replication ability in SK6 cells, while rHCLV-T988A exhibited a growth kinetics indistinguishable from that of C-strain. Removal of the C-strain glycosylation site does not affect viral replication in rabbits and the attenuated phenotype in pigs. However, rShimen-A988T was attenuated and protected the pigs from a lethal challenge at 14 days postinoculation. In contrast, the rHCLV-T988A-inoculated pigs showed transient fever, a few clinical signs, and pathological changes in the spleens upon challenge with the Shimen strain. Mechanistic investigations revealed that the unique glycosylation at position 986 influences viral spreading, alters the formation of E2 homodimers, and leads to increased production of neutralizing antibodies. Collectively, our data for the first time demonstrate that the unique glycosylation at position 986 on the E2 glycoprotein is responsible for viral attenuation and protection. IMPORTANCE Viral glycoproteins involve in infectivity, virulence, and host immune responses. Deglycosylation on the Erns, E1, or E2 glycoprotein of highly virulent classical swine fever virus (CSFV) attenuated viral virulence in pigs, indicating that the glycosylation contributes to the pathogenicity of the highly virulent strain. However, the effects of the glycosylation on the C-strain E2 glycoprotein on viral infectivity in cells, viral attenuation, and protection in pigs have not been elucidated. This study demonstrates the unique glycosylation at position 986 on the C-strain E2 glycoprotein. C-strain mutant removing the glycosylation at the site provides only partial protection against CSFV challenge. Remarkably, the addition of the glycan to E2 of the highly virulent Shimen strain attenuates the viral virulence and confers complete protection against the lethal challenge in pigs. Our findings provide a new insight into the contribution of the glycosylation to the virus attenuation and protection.


Assuntos
Vírus da Febre Suína Clássica/imunologia , Vírus da Febre Suína Clássica/patogenicidade , Peste Suína Clássica/prevenção & controle , Proteínas do Envelope Viral/metabolismo , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes/sangue , Peste Suína Clássica/virologia , Vírus da Febre Suína Clássica/genética , Vírus da Febre Suína Clássica/metabolismo , Glicosilação , Imunização/veterinária , Mutação , Multimerização Proteica , Coelhos , Suínos , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/metabolismo , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/genética , Vacinas Virais/metabolismo , Virulência , Replicação Viral
2.
Vet Microbiol ; 247: 108741, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32768202

RESUMO

Classical swine fever (CSF) is a highly contagious and economically damaging disease. Classical swine fever virus (CSFV) lapinized vaccine C-strain against CSF worldwide lacks the capacity for the serological differentiation between infected and vaccinated animals (DIVA). To develop a marker C-strain complying with the DIVA principle, we generated and evaluated mutants rHCLV-E2F117A, rHCLV-E2G119A, and rHCLV-E2P122A, which harbor the single amino acid mutation at 117F, 119G or 122P of the monoclonal antibody HQ06-recognized epitope on the E2 glycoprotein in rabbits and pigs. Viral intravenous administration demonstrated that all the mutants retain the phenotype of C-strain in rabbits, including fever response induction and replication in the spleen. Notably, the HQ06-recognized epitope did not react with the antibodies induced by rHCLV-E2P122A in rabbits, in contrast with C-strain and other two mutants. Intramuscular administration of rHCLV-E2P122A in pigs induced anti-CSFV neutralizing antibodies but not antibodies against the HQ06-recognized epitope at 28 days post-inoculation. Collectively, our data demonstrate that rHCLV-E2P122A is a promising marker vaccine candidate against CSF.


Assuntos
Anticorpos Antivirais/sangue , Peste Suína Clássica/prevenção & controle , Imunogenicidade da Vacina , Doenças dos Suínos/prevenção & controle , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Linhagem Celular , Peste Suína Clássica/imunologia , Vírus da Febre Suína Clássica/genética , Vírus da Febre Suína Clássica/imunologia , Células HEK293 , Humanos , Mutação , Fenótipo , Coelhos , Suínos , Doenças dos Suínos/imunologia , Doenças dos Suínos/virologia , Vacinação , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/genética
3.
J Virol ; 94(17)2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32581110

RESUMO

The classical swine fever virus (CSFV) live attenuated vaccine C-strain is adaptive to rabbits and attenuated in pigs, in contrast with the highly virulent CSFV Shimen strain. Previously, we demonstrated that P108 and T109 on the E2 glycoprotein (E2P108-T109) in domain I (E2DomainI) rather than R132, S133, and D191 in domain II (E2DomainII) determine C-strain's adaptation to rabbits (ATR) (Y. Li, L. Xie, L. Zhang, X. Wang, C. Li, et al., Virology 519:197-206, 2018). However, it remains elusive whether these critical amino acids affect the ATR of the Shimen strain and virulence in pigs. In this study, three chimeric viruses harboring E2P108-T109, E2DomainI, or E2DomainII of C-strain based on the non-rabbit-adaptive Shimen mutant vSM-HCLVErns carrying the Erns glycoprotein of C-strain were generated and evaluated. We found that E2P108-T109 or E2DomainI but not E2DomainII of C-strain renders vSM-HCLVErns adaptive to rabbits, suggesting that E2P108-T109 in combination with the Erns glycoprotein (E2P108-T109-Erns) confers ATR on the Shimen strain, creating new rabbit-adaptive CSFVs. Mechanistically, E2P108-T109-Erns of C-strain mediates viral entry during infection in rabbit spleen lymphocytes, which are target cells of C-strain. Notably, pig experiments showed that E2P108-T109-Erns of C-strain does not affect virulence compared with the Shimen strain. Conversely, the substitution of E2DomainII and Erns of C-strain attenuates the Shimen strain in pigs, indicating that the molecular basis of the CSFV ATR and that of virulence in pigs do not overlap. Our findings provide new insights into the mechanism of adaptation of CSFV to rabbits and the molecular basis of CSFV adaptation and attenuation.IMPORTANCE Historically, live attenuated vaccines produced by blind passage usually undergo adaptation in cell cultures or nonsusceptible hosts and attenuation in natural hosts, with a classical example being the classical swine fever virus (CSFV) lapinized vaccine C-strain, which was developed by hundreds of passages in rabbits. However, the mechanism of viral adaptation to nonsusceptible hosts and the molecular basis for viral adaptation and attenuation remain largely unknown. In this study, we demonstrated that P108 and T109 on the E2 glycoprotein together with the Erns glycoprotein of the rabbit-adaptive C-strain confer adaptation to rabbits on the highly virulent CSFV Shimen strain by affecting viral entry during infection but do not attenuate the Shimen strain in pigs. Our results provide vital information on the different molecular bases of CSFV adaptation to rabbits and attenuation in pigs.


Assuntos
Adaptação Fisiológica/fisiologia , Vírus da Febre Suína Clássica/fisiologia , Peste Suína Clássica/imunologia , Glicoproteínas/química , Proteínas do Envelope Viral/química , Animais , Linhagem Celular , Quimera , Peste Suína Clássica/prevenção & controle , Peste Suína Clássica/virologia , Modelos Animais de Doenças , Genoma Viral , Glicoproteínas/genética , Coelhos , Receptor EphB2 , Baço/virologia , Suínos , Vacinas Atenuadas , Proteínas do Envelope Viral/genética , Vacinas Virais/imunologia , Viremia , Virulência , Internalização do Vírus , Replicação Viral
4.
Virology ; 519: 197-206, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29734043

RESUMO

Classical swine fever virus (CSFV) C-strain was developed through hundreds of passages of a highly virulent CSFV in rabbits. To investigate the molecular basis for the adaptation of C-strain to the rabbit (ACR), a panel of chimeric viruses with the exchange of glycoproteins Erns, E1, and/or E2 between C-strain and the highly virulent Shimen strain and a number of mutant viruses with different amino acid substitutions in E2 protein were generated and evaluated in rabbits. Our results demonstrate that Shimen-based chimeras expressing Erns-E1-E2, Erns-E2 or E1-E2 but not Erns-E1, Erns, E1, or E2 of C-strain can replicate in rabbits, indicating that E2 in combination with either Erns or E1 confers the ACR. Notably, E2 and the amino acids P108 and T109 in Domain I of E2 are critical in ACR. Collectively, our data indicate that E2 is crucial in mediating the ACR, which requires synergistic contribution of Erns or E1.


Assuntos
Adaptação Biológica , Vírus da Febre Suína Clássica/fisiologia , Proteínas do Envelope Viral/fisiologia , Substituição de Aminoácidos , Animais , Linhagem Celular , Peste Suína Clássica/virologia , Vírus da Febre Suína Clássica/química , Vírus da Febre Suína Clássica/genética , Vírus da Febre Suína Clássica/patogenicidade , Mutação , Coelhos , Suínos , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética , Vacinas Virais
5.
Sheng Wu Gong Cheng Xue Bao ; 34(2): 216-223, 2018 Feb 25.
Artigo em Chinês | MEDLINE | ID: mdl-29424135

RESUMO

Classical swine fever (CSF), caused by classical swine fever virus (CSFV), is a devastating viral disease in swine, leading to significant economic losses to the pig husbandry. C-strain is one of the best modified live vaccines against CSF. The vaccine is highly safe and efficacious and can provide rapid and complete protection against essentially all genotypes of CSFV. Co-infections of pigs with CSFV and porcine circovirus type 2 (PCV2) occur frequently in the field, making it difficult to control the associated diseases. Here, a recombinant C-strain rHCLV-Cap expressing the Cap protein of PCV2 was constructed and evaluated in vitro and in vivo. The recombinant had comparable phenotypes to C-strain in cell cultures and rabbits. At ten days post-immunization, anti-E2, but not anti-Cap, antibodies were detected in the rabbits inoculated with the recombinant virus. Our study warrants further work to construct C-strain-based bivalent vaccines.


Assuntos
Proteínas do Capsídeo/imunologia , Circovirus/genética , Vírus da Febre Suína Clássica , Peste Suína Clássica/prevenção & controle , Vacinas Virais/genética , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Coinfecção/virologia , Engenharia de Proteínas , Coelhos , Proteínas Recombinantes/genética , Suínos
6.
Viruses ; 9(10)2017 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-29035292

RESUMO

Bivalent vaccines based on live attenuated viruses expressing a heterologous protein are an attractive strategy to address co-infections with various pathogens in the field. Considering the excellent efficacy and safety of the lapinized live attenuated vaccine C-strain (HCLV strain) of classical swine fever virus (CSFV), we proposed that C-strain has the potential as a viral vector for developing bivalent vaccines. To this end, we generated three recombinant viruses based on C-strain, one expressing the capsid (Cap) gene of porcine circovirus type 2 (PCV2) with the nuclear localization signal (NLS) (rHCLV-2ACap), and the other two expressing the PCV2 Cap gene without the NLS yet containing the signal peptide of the prolactin gene (rHCLV-pspCap) or that of the ubiquitin-specific peptidase gene (rHCLV-uspCap). All the recombinant viruses exhibited phenotypes similar to those of the parental virus and produced high-level anti-CSFV neutralizing antibodies (NAbs) in rabbits. Interestingly, rHCLV-uspCap and rHCLV-pspCap, but not rHCLV-2ACap, elicited detectable anti-Cap and -PCV2 NAbs in rabbits. Taken together, our data demonstrate that C-strain can be used as a viral vector to develop bivalent vaccines.


Assuntos
Proteínas do Capsídeo/genética , Circovirus/genética , Vírus da Febre Suína Clássica/genética , Vetores Genéticos , Vacinas Virais/genética , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Proteínas do Capsídeo/metabolismo , Circovirus/química , Circovirus/imunologia , Peste Suína Clássica/imunologia , Peste Suína Clássica/prevenção & controle , Peste Suína Clássica/virologia , Vírus da Febre Suína Clássica/imunologia , Coinfecção/virologia , Sinais de Localização Nuclear , Coelhos , Suínos , Vacinas Atenuadas/imunologia , Vacinas Virais/imunologia
7.
Sheng Wu Gong Cheng Xue Bao ; 33(8): 1213-1223, 2017 Aug 25.
Artigo em Chinês | MEDLINE | ID: mdl-28853249

RESUMO

Vaccination is an important strategy to prevent infectious diseases. However, low antigen yield of vaccine producing strains may lead to high cost of vaccines, low antigen production and vaccine failure. In recent years, many efforts have been made to improve the antigen yield of many vaccines. This mini-review summarizes various methods for increasing the antigen yield for vaccine production, including genetic modification of viruses, improvement of the adaptation of viruses to cells, and optimization of antigen expression systems and manufacturing procedures. Furthermore, we discuss the advantages and the problems of current strategies, as well as indicate the perspectives.


Assuntos
Antígenos Virais/biossíntese , Vacinas Virais/imunologia , Animais , Antígenos Virais/imunologia , Vacinação/veterinária
8.
Viruses ; 8(5)2016 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-27164126

RESUMO

Commonly used tests based on wild-type viruses, such as immunostaining, cannot meet the demands for rapid detection of viral replication, high-throughput screening for antivirals, as well as for tracking viral proteins or virus transport in real time. Notably, the development of replicating-competent reporter-expressing viruses (RCREVs) has provided an excellent option to detect directly viral replication without the use of secondary labeling, which represents a significant advance in virology. This article reviews the applications of RCREVs in diagnostic and molecular virology, including rapid neutralization tests, high-throughput screening systems, identification of viral receptors and virus-host interactions, dynamics of viral infections in vitro and in vivo, vaccination approaches and others. However, there remain various challenges associated with RCREVs, including pathogenicity alterations due to the insertion of a reporter gene, instability or loss of the reporter gene expression, or attenuation of reporter signals in vivo. Despite all these limitations, RCREVs have become powerful tools for both basic and applied virology with the development of new technologies for generating RCREVs, the inventions of novel reporters and the better understanding of regulation of viral replication.


Assuntos
Expressão Gênica , Genes Reporter , Coloração e Rotulagem/métodos , Virologia/métodos , Replicação Viral , Vírus/crescimento & desenvolvimento , Vírus/genética , Animais , Humanos , Biologia Molecular/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...