Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(5): 5683-5695, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38261396

RESUMO

Photosensitizers have been widely used to cause intratumoral generation of reactive oxygen species (ROS) for cancer therapy, but they are easily disturbed by the autophagy pathway, a self-protective mechanism by mitigating oxidative damage. Hereby, we reported a simple and effective strategy to construct a carrier-free nanodrug, Ce6@CQ namely, based on the self-assembly of the photosensitizer chlorin e6 (Ce6) and the autophagy inhibitor chloroquine (CQ). Specifically, Ce6@CQ avoided the unexpected toxicity caused by the regular nanocarrier and also ameliorated its stability in different conditions. Light-activated Ce6 generated cytotoxic ROS and elicited part of the immunogenic cell death (ICD). Moreover, CQ induced autophagy dysfunction, which hindered self-healing in tumor cells and enhanced photodynamic therapy (PDT) to exert a more potent killing effect and more efficient ICD. Also, Ce6@CQ could effectively accumulate in the xenograft breast tumor site in a mouse model through the enhanced permeability and retention (EPR) effect, and the growth of breast tumors was effectively inhibited by Ce6@CQ with light. Such a carrier-free nanodrug provided a new strategy to improve the efficacy of PDT via the suppression of autophagy to digest ROS-induced toxic substances.


Assuntos
Neoplasias da Mama , Nanopartículas , Fotoquimioterapia , Porfirinas , Animais , Camundongos , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Morte Celular Imunogênica , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Autofagia , Porfirinas/farmacologia , Porfirinas/uso terapêutico
2.
J Nanobiotechnology ; 21(1): 393, 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37898773

RESUMO

Irinotecan (Ir) is commonly employed as a first-line chemotherapeutic treatment for colorectal cancer (CRC). However, tremendous impediments remain to be addressed to surmount drug resistance and ameliorate adverse events. Poly-ADP-Ribose Polymerase (PARP) participates in the maintenance of genome stability and the repair of DNA damage, thus playing a critical role in chemotherapy resistance. In this work, we introduce a novel curative strategy that utilizes nanoparticles (NPs) prepared by dynamic supramolecular co-assembly of Ir and a PARP inhibitor (PARPi) niraparib (Nir) through π-π stacking and hydrogen bond interactions. The Ir and Nir self-assembled Nano-Twin-Drug of (Nir-Ir NPs) could enhance the therapeutic effect on CRC by synergistically inhibiting the DNA damage repair pathway and activating the tumor cell apoptosis process without obvious toxicity. In addition, the Nir-Ir NPs could effectively reverse irinotecan-resistance by inhibiting the expression of multiple resistance protein-1 (MRP-1). Overall, our study underscores the distinctive advantages and potential of Nir-Ir NPs as a complementary strategy to chemotherapy by simultaneously overcoming the Ir resistance and improving the anti-tumor efficacy against CRC.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Humanos , Irinotecano/farmacologia , Irinotecano/uso terapêutico , Antineoplásicos/química , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Apoptose , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Linhagem Celular Tumoral
3.
Nanoscale ; 15(30): 12598-12611, 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37462439

RESUMO

Photothermal therapy (PTT) is an emerging field where photothermal agents could convert visible or near-infrared (NIR) radiation into heat to kill tumor cells. However, the low photothermal conversion efficiency of photothermal agents and their limited antitumor activities hinder the development of these agents into monotherapies for cancer. Herein, we have fabricated an ultrasmall polyvinylpyrrolidone (PVP)-Fe-Cu-Ni-S (PVP-NP) nano-agent via a simple hot injection method with excellent photothermal conversion efficiency (∼96%). Photothermal therapy with this nano-agent effectively inhibits tumor growth without apparent toxic side-effects. Mechanistically, our results demonstrated that, after NIR irradiation, PVP-NPs can induce ROS/singlet oxygen generation, decrease the mitochondrial membrane potential, release extracellular Fe2+, and consume glutathione, triggering autophagy and ferroptosis of cancer cells. Moreover, PVP-NPs exhibit excellent contrast enhancement according to magnetic resonance imaging (MRI) analysis. In summary, PVP-NPs have a high photothermal conversion efficiency and can be applied for MRI-guided synergistic photothermal/photodynamic/chemodynamic cancer therapy, resolving the bottleneck of existing phototherapeutic agents.


Assuntos
Ferroptose , Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Povidona/farmacologia , Nanomedicina Teranóstica/métodos , Fotoquimioterapia/métodos , Fototerapia/métodos , Neoplasias/tratamento farmacológico , Autofagia , Nanopartículas/uso terapêutico , Linhagem Celular Tumoral
4.
Front Bioeng Biotechnol ; 11: 1121887, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36815890

RESUMO

Immunotherapy is a revolutionary and promising approach to cancer treatment. However, traditional cancer immunotherapy often has the disadvantages of limited immune response rate, poor targeting, and low treatment index due to systemic administration. Hydrogels are drug carriers with many advantages. They can be loaded and transported with immunotherapeutic agents, chemical anticancer drugs, radiopharmaceuticals, photothermal agents, photosensitizers, and other therapeutic agents to achieve controlled release of drugs, extend the retention time of drugs, and thus successfully trigger anti-tumor effects and maintain long-term therapeutic effects after administration. This paper reviews recent advances in injectable hydrogel-based cancer immunotherapy, including immunotherapy alone, immunotherapy with combination chemotherapy, radiotherapy, phototherapy, and DNA hydrogel-based immunotherapy. Finally, we review the potential and limitations of injectable hydrogels in cancer immunotherapy.

5.
Molecules ; 27(19)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36234997

RESUMO

As a promising therapy, photothermal therapy (PTT) converts near-infrared (NIR) light into heat through efficient photothermal agents (PTAs), causing a rapid increase in local temperature. Considering the importance of PTAs in the clinical application of PTT, the safety of PTAs should be carefully evaluated before their widespread use. As a promising PTA, mesoporous polydopamine (MPDA) was studied for its clinical applications for tumor photothermal therapy and drug delivery. Given the important role that intestinal microflora plays in health, the impacts of MPDA on the intestine and on intestinal microflora were systematically evaluated in this study. Through biological and animal experiments, it was found that MPDA exhibited excellent biocompatibility, in vitro and in vivo. Moreover, 16S rRNA analysis demonstrated that there was no obvious difference in the composition and classification of intestinal microflora between different drug delivery groups and the control group. The results provided new evidence that MPDA was safe to use in large doses via different drug delivery means, and this lays the foundation for further clinical applications.


Assuntos
Microbioma Gastrointestinal , Hipertermia Induzida , Nanopartículas , Animais , Compostos de Diazônio , Indóis , Intestinos , Fototerapia , Polímeros , Piridinas , RNA Ribossômico 16S/genética
6.
Front Bioeng Biotechnol ; 10: 893608, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35573233

RESUMO

Mesoporous polydopamine nanoparticles (MPDA NPs) are promising nanomaterials that have the prospect of clinical application for multi-strategy antitumor therapy, while the biosecurity of MPDA NPs remains indistinct. Here, transcriptome sequencing (RNA-Seq) was performed to systematically reveal the toxicity of MPDA NPs to five categories of organs after three different exposure routes, including intravenous injection, intramuscular injection, and intragastric administration. Our results uncovered that MPDA NPs could be deposited in various organs in small amounts after intravenous administration, not for the other two exposure routes. The number of differentially expressed genes (DEGs) identified in the heart, liver, spleen, lung, and kidney from the intragastric administration group was from 22 to 519. Similarly, the corresponding number was from 23 to 64 for the intramuscular injection group and was from 11 to 153 for the intravenous injection group. Functional enrichment analyses showed 6, 39, and 4 GO terms enriched for DEGs in intragastric administration, intramuscular injection, and intravenous injection groups, respectively. One enriched pathway was revealed in intragastric administration group, while no enriched pathway was found in other groups. Our results indicated that MPDA NPs produced only slight changes at the transcriptome level in mice, which provided new insights for further clinical application of MPDA NPs.

7.
Biomater Sci ; 10(11): 2759-2771, 2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35445676

RESUMO

Polymeric hydrogels have extraordinary potential to be utilized for biomedical applications. Recently, sprayable hydrogels have received increasing attention for their biocompatibility, degradability, tunable mechanical properties and rapid spray-filming abilities. In this review, hydrogel-based biomaterials, especially those based on natural polymers, such as polysaccharides and proteins, have been explained. The focus of this review lies on illuminating recent advances in sprayable hydrogel systems and highlighting the properties and applications of sprayable hydrogels, such as wound management, postoperative adhesion and cancer therapeutics. In addition, future research directions and challenges are also discussed.


Assuntos
Materiais Biocompatíveis , Hidrogéis , Polímeros , Polissacarídeos
8.
Front Pharmacol ; 12: 753676, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34764872

RESUMO

Chemotherapy is the most common clinical treatment for non-small cell lung cancer (NSCLC), but low efficiency and high toxicity of current chemotherapy drugs limit their clinical application. Therefore, it is urgent to develop hypotoxic and efficient chemotherapy drugs. Theophylline, a natural compound, is safe and easy to get, and it can be used as a modified scaffold structure and hold huge potential for developing safe and efficient antitumor drugs. Herein, we linked theophylline with different azide compounds to synthesize a new type of 1,2,3-triazole ring-containing theophylline derivatives. We found that some theophylline1,2,3-triazole compounds showed a good tumor-suppressive efficacy. Especially, derivative d17 showed strong antiproliferative activity against a variety of cancer cells in vitro, including H460, A549, A2780, LOVO, MB-231, MCF-7, OVCAR3, SW480, and PC-9. It is worth noting that the two NSCLC cell lines H460 H and A549 are sensitive to compound d17 particularly, with IC50 of 5.929 ± 0.97 µM and 6.76 ± 0.25 µM, respectively. Compound d17 can significantly induce cell apoptosis by increasing the ratio of apoptotic protein Bax/Bcl-2 by downregulating the expression of phosphorylated Akt protein, and it has little toxicity to normal hepatocyte cells LO2 at therapeutic concentrations. These data indicate that these theophylline acetic acid-1,2,3-triazole derivatives may be potential drug candidates for anti-NSCLC and are worthy of further study.

9.
Cell Cycle ; 18(17): 2110-2123, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31290724

RESUMO

Long noncoding RNAs (lncRNAs) have emerged as critical regulators for gene expression in multiple levels and thus are involved in various physiological and pathological processes. Sirtuin 1 (SIRT1) has been established to exert key roles in the diverse biological process through deacetylation of substrates, including DNA damage repair. Nevertheless, the regulatory relationship between SIRT1 and lncRNAs, and the effect of lncRNA on SIRT1-mediated functions were still far to be elucidated. We herein uncovered that lncRNA miR17HG was notably down-regulated in SIRT1-deficient cells, and significantly up-regulated after ectopic expression of SIRT1. Subsequently, the results of dual luciferase reporter (DLR) showed that SIRT1 dramatically enhanced the promoter activity of the miR-17-92 cluster. Furthermore, we specifically knocked down the previous demonstrated transcription factor for the miR-17-92 cluster, C-Myc, which was the validated substrate of SIRT1. As expected, miR17HG and miR-17-92 miRNAs were evidently down-regulated after silencing of C-Myc; and silencing of C-Myc significantly reversed the effect of SIRT1 on miR17HG expression, suggesting that SIRT1 endowed cells with elevated miR17HG expression through stabilization of C-Myc. What is more, silencing of miR17HG significantly inhibited the repair of DNA DSBs, while enforced expression of miR17HG promoted DSBs repair. Fascinatingly, overexpression of miR17HG evidently enhanced the deacetylation activity of SIRT1, while silencing of miR17HG conferred diminished deacetylation activity. In addition, the results of RIP unraveled the physical interaction between miR17HG and SIRT1. Taken together, we presented evidences that miR17HG and SIRT1 probably formed a positive feedback loop, which exerted a crucial effect on DSBs repair.


Assuntos
Reparo do DNA/genética , MicroRNAs/genética , RNA Longo não Codificante/genética , Sirtuína 1/genética , Proliferação de Células/genética , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Dano ao DNA/genética , Retroalimentação Fisiológica , Regulação da Expressão Gênica , Humanos , Proteínas Proto-Oncogênicas c-myc/genética
10.
Aging Cell ; 18(3): e12918, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30848072

RESUMO

Aging is a multifactorial process characterized by the progressive deterioration of physiological functions. Among the multiple molecular mechanisms, microRNAs (miRNAs) have increasingly been implicated in the regulation of Aging process. However, the contribution of miRNAs to physiological Aging and the underlying mechanisms remain elusive. We herein performed high-throughput analysis using miRNA and mRNA microarray in the physiological Aging mouse, attempted to deepen into the understanding of the effects of miRNAs on Aging process at the "network" level. The data showed that various p53 responsive miRNAs, including miR-124, miR-34a and miR-29a/b/c, were up-regulated in Aging mouse compared with that in Young mouse. Further investigation unraveled that similar as miR-34a and miR-29, miR-124 significantly promoted cellular senescence. As expected, mRNA microarray and gene co-expression network analysis unveiled that the most down-regulated mRNAs were enriched in the regulatory pathways of cell proliferation. Fascinatingly, among these down-regulated mRNAs, Ccna2 stood out as a common target of several p53 responsive miRNAs (miR-124 and miR-29), which functioned as the antagonist of p21 in cell cycle regulation. Silencing of Ccna2 remarkably triggered the cellular senescence, while Ccna2 overexpression delayed cellular senescence and significantly reversed the senescence-induction effect of miR-124 and miR-29. Moreover, these p53 responsive miRNAs were significantly up-regulated during the senescence process of p21-deficient cells; overexpression of p53 responsive miRNAs or knockdown of Ccna2 evidently accelerated the cellular senescence in the absence of p21. Taken together, our data suggested that the p53/miRNAs/Ccna2 pathway might serve as a novel senescence modulator independent of p53/p21 pathway.


Assuntos
Senescência Celular , Ciclina A2/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , MicroRNAs/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Células Cultivadas , Senescência Celular/genética , Ciclina A2/deficiência , Ciclina A2/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Células NIH 3T3 , Proteína Supressora de Tumor p53/genética
11.
Cell Cycle ; 15(21): 2920-2930, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27559850

RESUMO

Cisplatin is the most potent and widespread used chemotherapy drug for lung cancer treatment. However, the development of resistance to cisplatin is a major obstacle in clinical therapy. The principal mechanism of cisplatin is the induction of DNA damage, thus the capability of DNA damage response (DDR) is a key factor that influences the cisplatin sensitivity of cancer cells. Recent advances have demonstrated that miRNAs (microRNAs) exerted critical roles in DNA damage response; nonetheless, the association between DNA damage responsive miRNAs and cisplatin resistance and its underlying molecular mechanism still require further investigation. The present study has attempted to identify differentially expressed miRNAs in cisplatin induced DNA damage response in lung cancer cells, and probe into the effects of the misexpressed miRNAs on cisplatin sensitivity. Deep sequencing showed that miR-33b-3p was dramatically down-regulated in cisplatin-induced DNA damage response in A549 cells; and ectopic expression of miR-33b-3p endowed the lung cancer cells with enhanced survival and decreased γH2A.X expression level under cisplatin treatment. Consistently, silencing of miR-33b-3p in the cisplatin-resistant A549/DDP cells evidently sensitized the cells to cisplatin. Furthermore, we identified CDKN1A (p21) as a functional target of miR-33b-3p, a critical regulator of G1/S checkpoint, which potentially mediated the protection effects of miR-33b-3p against cisplatin. In aggregate, our results suggested that miR-33b-3p modulated the cisplatin sensitivity of cancer cells might probably through impairing the DNA damage response. And the knowledge of the drug resistance conferred by miR-33b-3p has great clinical implications for improving the efficacy of chemotherapies for treating lung cancers.


Assuntos
Cisplatino/farmacologia , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Dano ao DNA/genética , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , MicroRNAs/metabolismo , Células A549 , Sequência de Bases , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/genética , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , MicroRNAs/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...