Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 19(23)2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31816927

RESUMO

Sensor-clouds are a combination of wireless sensor networks (WSNs) and cloud computing. The emergence of sensor-clouds has greatly enhanced the computing power and storage capacity of traditional WSNs via exploiting the advantages of cloud computing in resource utilization. However, there are still many problems to be solved in sensor-clouds, such as the limitations of WSNs in terms of communication and energy, the high latency, and the security and privacy issues due to applying a cloud platform as the data processing and control center. In recent years, mobile edge computing has received increasing attention from industry and academia. The core of mobile edge computing is to migrate some or all of the computing tasks of the original cloud computing center to the vicinity of the data source, which gives mobile edge computing great potential in solving the shortcomings of sensor-clouds. In this paper, the latest research status of sensor-clouds is briefly analyzed and the characteristics of the existing sensor-clouds are summarized. After that we discuss the issues of sensor-clouds and propose some applications, especially a trust evaluation mechanism and trustworthy data collection which use mobile edge computing to solve the problems in sensor-clouds. Finally, we discuss research challenges and future research directions in leveraging mobile edge computing for sensor-clouds.

2.
Sensors (Basel) ; 18(7)2018 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-30029552

RESUMO

Data aggregation is a widely adopted method to effectively reduce the data transmission volume and improve the lifetime of wireless sensor networks (WSNs). In the data aggregation networks, some parameters directly determine the delay of aggregation. In industrial applications, the data generated by different sensors have different requirements for delay or other QoS performance. In the previous study, a common strategy is that all kinds of data is aggregated into one frame when the condition is satisfied with a QoS requirement, which causes excessive energy consumption and severely impairs the lifetime of network. A Differentiated Data Aggregation Routing (DDAR) scheme is proposed to reduce energy consumption and guarantee that the delay could be controlled within the corresponding QoS requirement constraint. The primary contributions of the DDAR scheme are the following: (a) The DDAR scheme makes data with different QoS requirement route to the sink along the different paths. The parameters of the aggregators in each path, such as aggregation deadline (Tt) and the aggregation threshold (Nt), are configured according to the QoS requirements. Accordingly, energy consumption can be reduced without degrading the performance of data transmission. (b) Based on DDAR scheme, an improved DDAR scheme is proposed to further improve performance through fully utilize the residual energy in the nodes which are far from the sink. The frequency of aggregation of these nodes increases by reducing the value of Tt and Nt so as to further improve the energy efficiency and reduce delay. Simulation results demonstrate that compared with the previous scheme, this scheme reduces the delay by 25.01%, improves the lifetime by 55.45%, and increases energy efficiency by 83.99%. The improved DDAR scheme improves the energy efficiency by 33.97% and service guarantee rate by 10.11%.

3.
Sensors (Basel) ; 18(4)2018 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-29659535

RESUMO

The quality of service (QoS) regarding delay, lifetime and reliability is the key to the application of wireless sensor networks (WSNs). Data aggregation is a method to effectively reduce the data transmission volume and improve the lifetime of a network. In the previous study, a common strategy required that data wait in the queue. When the length of the queue is greater than or equal to the predetermined aggregation threshold ( N t ) or the waiting time is equal to the aggregation timer ( T t ), data are forwarded at the expense of an increase in the delay. The primary contributions of the proposed Adaptive Aggregation Routing (AAR) scheme are the following: (a) the senders select the forwarding node dynamically according to the length of the data queue, which effectively reduces the delay. In the AAR scheme, the senders send data to the nodes with a long data queue. The advantages are that first, the nodes with a long data queue need a small amount of data to perform aggregation; therefore, the transmitted data can be fully utilized to make these nodes aggregate. Second, this scheme balances the aggregating and data sending load; thus, the lifetime increases. (b) An improved AAR scheme is proposed to improve the QoS. The aggregation deadline ( T t ) and the aggregation threshold ( N t ) are dynamically changed in the network. In WSNs, nodes far from the sink have residual energy because these nodes transmit less data than the other nodes. In the improved AAR scheme, the nodes far from the sink have a small value of T t and N t to reduce delay, and the nodes near the sink are set to a large value of T t and N t to reduce energy consumption. Thus, the end to end delay is reduced, a longer lifetime is achieved, and the residual energy is fully used. Simulation results demonstrate that compared with the previous scheme, the performance of the AAR scheme is improved. This scheme reduces the delay by 14.91%, improves the lifetime by 30.91%, and increases energy efficiency by 76.40%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...