Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cureus ; 16(5): e59942, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38854305

RESUMO

Background and objectives Ginsenoside Re (Re), a protopanaxatriol-type saponin extracted from ginseng, is known to have potential cardioprotective effects; however, the mechanisms of Re in improving cardiac hypertrophy have not been fully elucidated. This study aimed to investigate the therapeutic effects and underlying mechanism of Re on isoproterenol (ISO)-induced cardiac hypertrophy in vivo and in vitro. Methods Rats were intraperitoneally injected with ISO 30 mg/kg thrice daily for 14 consecutive days to induce cardiac hypertrophy, and these rats were treated with atorvastatin (ATC, 20 mg/kg) or Re (20 mg/kg or 40 mg/kg) once daily for three days in advance until the end of the experiment. Heart weight index, hematoxylin and eosin staining, and hypertrophy-related fetal gene expression were measured to evaluate the effect of Re on cardiac hypertrophy in vivo. Meanwhile, the rat H9c2 cardiomyocyte hypertrophy model was induced by ISO 10 µM for 24 hours. Cell surface area and hypertrophy-related fetal gene expression were determined to assess the effect of Re on ISO-induced cardiomyocyte hypertrophy in vitro. The levels of total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) in both serum and cardiomyocytes were detected by enzymatic colorimetric assays. Furthermore, we chose cholesteryl ester transfer protein (CETP) as a target to explore the influence of Re on CETP expression in vivo and in vitro through real-time polymerase chain reaction, western blot, and enzyme-linked immunosorbent assay. Results Intraperitoneal administration of ISO into rats resulted in increases in cross-sectional cardiomyocyte area, the ratio of heart weight to body weight, the ratio of left ventricular weight to body weight, and the ratio of right ventricular weight to body weight, as well as reactivation of fetal genes; however, treatment with Re or ATC ameliorated most of these hypertrophic responses. Similarly, Re pronouncedly alleviated ISO-induced cardiomyocyte hypertrophy, as evidenced by a decreased cell surface area and downregulation of fetal genes. Moreover, our in vivo and in vitro data revealed that Re reduced TC, TG, and LDL-C levels, and enhanced HDL-C levels. Re improved cardiac hypertrophy mainly associated with the inhibition of mRNA level and protein expression of CETP, to an extent comparable to that of the classical CETP inhibitor, anacetrapib. Conclusions Our research found that CETP inhibition contributes to the protection of Re against ISO-induced cardiac hypertrophy, which provides evidence for the application of Re for cardiovascular disease treatments.

2.
Curr Med Sci ; 44(2): 450-461, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38639827

RESUMO

OBJECTIVE: Cymbopogon citratus (DC.) Stapf is a medicinal and edible herb that is widely used for the treatment of gastric, nervous and hypertensive disorders. In this study, we investigated the cardioprotective effects and mechanisms of the essential oil, the main active ingredient of Cymbopogon citratus, on isoproterenol (ISO)-induced cardiomyocyte hypertrophy. METHODS: The compositions of Cymbopogon citratus essential oil (CCEO) were determined by gas chromatography-mass spectrometry. Cardiomyocytes were pretreated with 16.9 µg/L CCEO for 1 h followed by 10 µmol/L ISO for 24 h. Cardiac hypertrophy-related indicators and NLRP3 inflammasome expression were evaluated. Subsequently, transcriptome sequencing (RNA-seq) and target verification were used to further explore the underlying mechanism. RESULTS: Our results showed that the CCEO mainly included citronellal (45.66%), geraniol (23.32%), and citronellol (10.37%). CCEO inhibited ISO-induced increases in cell surface area and protein content, as well as the upregulation of fetal gene expression. Moreover, CCEO inhibited ISO-induced NLRP3 inflammasome expression, as evidenced by decreased lactate dehydrogenase content and downregulated mRNA levels of NLRP3, ASC, CASP1, GSDMD, and IL-1ß, as well as reduced protein levels of NLRP3, ASC, pro-caspase-1, caspase-1 (p20), GSDMD-FL, GSDMD-N, and pro-IL-1ß. The RNA-seq results showed that CCEO inhibited the increase in the mRNA levels of 26 oxidative phosphorylation complex subunits in ISO-treated cardiomyocytes. Our further experiments confirmed that CCEO suppressed ISO-induced upregulation of mt-Nd1, Sdhd, mt-Cytb, Uqcrq, and mt-Atp6 but had no obvious effects on mt-Col expression. CONCLUSION: CCEO inhibits ISO-induced cardiomyocyte hypertrophy through the suppression of NLRP3 inflammasome expression and the regulation of several oxidative phosphorylation complex subunits.


Assuntos
Cymbopogon , Óleos Voláteis , Óleos Voláteis/farmacologia , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR , Cymbopogon/química , Cymbopogon/metabolismo , Isoproterenol , Miócitos Cardíacos/metabolismo , Fosforilação Oxidativa , RNA Mensageiro/metabolismo , Hipertrofia/induzido quimicamente , Hipertrofia/tratamento farmacológico , Hipertrofia/metabolismo
3.
Korean J Physiol Pharmacol ; 27(1): 75-84, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36575935

RESUMO

This study aimed to observe the protective effect of momordicine I, a triterpenoid compound extracted from momordica charantia L., on isoproterenol (ISO)-induced hypertrophy in rat H9c2 cardiomyocytes and investigate its potential mechanism. Treatment with 10 µM ISO induced cardiomyocyte hypertrophy as evidenced by increased cell surface area and protein content as well as pronounced upregulation of fetal genes including atrial natriuretic peptide, ß-myosin heavy chain, and α-skeletal actin; however, those responses were markedly attenuated by treatment with 12.5 µg/ml momordicine I. Transcriptome experiment results showed that there were 381 and 447 differentially expressed genes expressed in comparisons of model/control and momordicine I intervention/model, respectively. GO enrichment analysis suggested that the anti-cardiomyocyte hypertrophic effect of momordicine I may be mainly associated with the regulation of metabolic processes. Based on our transcriptome experiment results as well as literature reports, we selected glycerophospholipid metabolizing enzymes group VI phospholipase A2 (PLA2G6) and diacylglycerol kinase ζ (DGK-ζ) as targets to further explore the potential mechanism through which momordicine I inhibited ISO-induced cardiomyocyte hypertrophy. Our results demonstrated that momordicine I inhibited ISO-induced upregulations of mRNA levels and protein expressions of PLA2G6 and DGK-ζ. Collectively, momordicine I alleviated ISO-induced cardiomyocyte hypertrophy, which may be related to its inhibition of the expression of glycerophospholipid metabolizing enzymes PLA2G6 and DGK-ζ.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...