Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 33(8): e2006390, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33448100

RESUMO

Colloidal assembly at fluid interfaces has a great potential for the bottom-up fabrication of novel structured materials. However, challenges remain in realizing controllable and tunable assembly of particles into diverse structures. Herein, the capillary assembly of magnetic ellipsoidal Janus particles at a fluid-fluid interface is reported. Depending on their tilt angle, that is, the angle the particle main axis forms with the fluid interface, these particles deform the interface and generate capillary dipoles or hexapoles. Driven by capillary interactions, multiple particles thus assemble into chain-, hexagonal-lattice-, and ring-like structures, which can be actively controlled by applying an external magnetic field. A field-strength phase diagram is predicted in which various structures are present as stable states. Owing to the diversity, controllability, and tunability of assembled structures, magnetic ellipsoidal Janus particles at fluid interfaces could therefore serve as versatile building blocks for novel materials.

2.
Phys Rev Lett ; 124(19): 194502, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32469577

RESUMO

A basic feature of liquid drops is that they can merge upon contact to form a larger drop. In spite of its importance to various applications, drop coalescence on prewetted substrates has received little attention. Here, we experimentally and theoretically reveal the dynamics of drop coalescence on a thick layer of a low viscosity liquid. It is shown that these so-called "liquid lenses" merge by the self-similar vertical growth of a bridge connecting the two lenses. Using a slender analysis, we derive similarity solutions corresponding to the viscous and inertial limits. Excellent agreement is found with the experiments without any adjustable parameters, capturing both the spatial and temporal structures of the flow during coalescence. Finally, we consider the crossover between the two regimes and show that all data of different lens viscosities collapse on a single curve capturing the full range of the coalescence dynamics.

3.
J Chem Phys ; 151(12): 124707, 2019 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-31575188

RESUMO

A system of ferromagnetic particles trapped at a liquid-liquid interface and subjected to a set of magnetic fields (magnetocapillary swimmers) is studied numerically using a hybrid method combining the pseudopotential lattice Boltzmann method and the discrete element method. After investigating the equilibrium properties of a single, two, and three particles at the interface, we demonstrate a controlled motion of the swimmer formed by three particles. It shows a sharp dependence of the average center-of-mass speed on the frequency of the time-dependent external magnetic field. Inspired by experiments on magnetocapillary microswimmers, we interpret the obtained maxima of the swimmer speed by the optimal frequency centered around the characteristic relaxation time of a spherical particle. It is also shown that the frequency corresponding to the maximum speed grows and the maximum average speed decreases with increasing interparticle distances at moderate swimmer sizes. The findings of our lattice Boltzmann simulations are supported by bead-spring model calculations.

4.
Soft Matter ; 15(32): 6461-6468, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31292583

RESUMO

Droplets on a liquid-immersed solid surface are key elements in many applications, such as high-throughput chemical analysis and droplet-templated porous materials. Such surface droplets dissolve when the surrounding liquid is undersaturated and the dissolution process is usually treated analogous to a sessile droplet evaporating in air. Typically, theoretical models predict the mass loss rate of dissolving droplets as a function of droplet geometrical factors (radius, constant angle), and droplet material properties (diffusion constant and densities), where the thickness of the surrounding liquid layer is neglected. Here, we investigate, both numerically and theoretically, the effect of the liquid layer thickness on the dissolution of surface droplets. We perform 3D lattice Boltzmann simulations and obtain the density distribution and time evolution of droplet height during dissolution. Moreover, we find that the dissolution slows down and the lifetime linearly increases with increasing the liquid layer thickness. We propose a theoretical model based on a quasistatic diffusion equation which agrees quantitatively with simulation results for thick liquid layers. Our results offer insight to the fundamental understanding of dissolving surface droplets and can provide valuable guidelines for the design of devices where the droplet lifetime is of importance.

5.
Langmuir ; 34(18): 5303-5311, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29652501

RESUMO

The deposition of particles on a substrate by drying a colloidal suspension droplet is at the core of applications ranging from traditional printing on paper to printable electronics or photovoltaic devices. The self-pinning induced by the accumulation of particles at the contact line plays an important role in the formation of a deposit. In this article, we investigate, both numerically and theoretically, the effect of friction between the particles and the substrate on the deposition pattern. Without friction, the contact line shows a stick-slip behavior and a dotlike deposit is left after the droplet is evaporated. By increasing the friction force, we observe a transition from a dotlike to a ringlike deposit. We propose a theoretical model to predict the effective radius of the particle deposit as a function of the friction force. Our theoretical model predicts a critical friction force when self-pinning happens and the effective radius of deposit increases with increasing friction force, confirmed by our simulation results. Our results can find implications for developing active control strategies for the deposition of drying droplets.

6.
ACS Nano ; 11(11): 11232-11239, 2017 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-29035521

RESUMO

Self-assembly of nanoparticles at fluid-fluid interfaces is a promising route to fabricate functional materials from the bottom-up. However, directing and controlling particles into highly tunable and predictable structures, while essential, is a challenge. We present a liquid interface assisted approach to fabricate nanoparticle structures with tunable properties. To demonstrate its feasibility, we study magnetic Janus particles adsorbed at the interface of a spherical droplet placed on a substrate. With an external magnetic field turned on, a single particle moves to the location where its position vector relative to the droplet center is parallel to the direction of the applied field. Multiple magnetic Janus particles arrange into reconfigurable hexagonal lattice structures and can be directed to assemble at desirable locations on the droplet interface by simply varying the magnetic field direction. We develop an interface energy model to explain our observations, finding excellent agreement. Finally, we demonstrate that the external magnetic field allows one to tune the particle deposition pattern obtained when the droplet evaporates. Our results have implications for the fabrication of varied nanostructures on substrates for use in nanodevices, organic electronics, or advanced display, printing, and coating applications.

7.
J Chem Phys ; 146(5): 054111, 2017 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-28178841

RESUMO

We present a diffusion dominated evaporation model using the popular pseudopotential multicomponent lattice Boltzmann method introduced by Shan and Chen. With an analytical computation of the diffusion coefficients, we demonstrate that Fick's law is obeyed. We then validate the applicability of our model by demonstrating the agreement of the time evolution of the interface position of an evaporating planar film to the analytical prediction. Furthermore, we study the evaporation of a freely floating droplet and confirm that the effect of Laplace pressure is significant for predicting the time evolution of small droplet radii.

8.
Soft Matter ; 12(31): 6566-74, 2016 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-27383223

RESUMO

Capillary interactions can be used to direct assembly of particles adsorbed at fluid-fluid interfaces. Precisely controlling the magnitude and direction of capillary interactions to assemble particles into favoured structures for materials science purposes is desirable but challenging. In this paper, we investigate capillary interactions between magnetic Janus particles adsorbed at fluid-fluid interfaces. We develop a pair-interaction model that predicts that these particles should arrange into a side-side configuration, and carry out simulations that confirm the predictions of our model. Finally, we investigate the monolayer structures that form when many magnetic Janus particles adsorb at the interface. We find that the particles arrange into long, straight chains exhibiting little curvature, in contrast with capillary interactions between ellipsoidal particles. We further find a regime in which highly ordered, lattice-like monolayer structures form, which can be tuned dynamically using an external magnetic field.

9.
Soft Matter ; 11(18): 3581-8, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-25790183

RESUMO

Janus particles have attracted significant interest as building blocks for complex materials in recent years. Furthermore, capillary interactions have been identified as a promising tool for directed self-assembly of particles at fluid-fluid interfaces. In this paper, we develop theoretical models describing the behaviour of magnetic Janus particles adsorbed at fluid-fluid interfaces interacting with an external magnetic field. Using numerical simulations, we test the models predictions and show that the magnetic Janus particles deform the interface in a dipolar manner. We suggest how to utilise the resulting dipolar capillary interactions to assemble particles at a fluid-fluid interface, and further demonstrate that the strength of these interactions can be tuned by altering the external field strength, opening up the possibility to create novel, reconfigurable materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...