Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 163
Filtrar
1.
Mol Divers ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38935305

RESUMO

The urokinase-type plasminogen activator receptor (uPAR) emerges as a key target for anti-metastasis owing to its pivotal role in facilitating the invasive and migratory processes of cancer cells. Recently, we identified the uPAR-targeting anti-metastatic ability of diltiazem (22), a commonly used antihypertensive agent. Fine-tuning the chemical structures of known hits represents a vital branch of drug development. To develop novel anti-metastatic drugs, we performed an interface-driven structural evolution strategy on 22. The uPAR-targeting and anti-cancer abilities of this antihypertensive drug wereidentified by us recently. Based on in silico strategy, including extensive molecular dynamics (MD) simulations, hierarchical binding free energy predictions, and ADMET profilings, we designed, synthesized, and identified three new diltiazem derivatives (221-8, 221-57, and 221-68) as uPAR inhibitors. Indeed, all of these three derivatives exhibited uPAR-depending inhibitory activity against PC-3 cell line invasion at micromolar level. Particularly, derivatives 221-68 and 221-8 showed enhanced uPAR-dependent inhibitory activity against the tumor cell invasion compared to the original compound. Microsecond timesclae MD simulations demonstrated the optimized moiety of 221-68 and 221-8 forming more comprehensive interactions with the uPAR, highlighting the reasonability of our strategy. This work introduces three novel uPAR inhibitors, which not only pave the way for the development of effective anti-metastatic therapeutics, but also emphasize the efficacy and robustness of an in silico-based lead compound optimization strategy in drug design.

2.
Int J Biol Macromol ; 274(Pt 2): 133434, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38936570

RESUMO

This study aimed to evaluate the influence of ultrasonic degradation on the physicochemical and biological characteristics of Polygonatum cyrtonema polysaccharide (PCP, 8.59 kDa). PCP was subjected to ultrasonic treatment for 8, 16, and 24 h and yielded the degraded fractions PCP-8, PCP-16, and PCP-24 (5.06, 4.13, and 3.69 kDa), respectively. Compared with the intact PCP, PCP-8, PCP-16 and PCP-24 had a reduced particle size (decrements of 28.03 %, 46.15 % and 62.54 %, respectively). Although ultrasonic degradation did not alter the primary structure of PCP, its triple helical and superficial structures were disrupted, with degraded fractions demonstrating reduced thermal stability and apparent viscosities compared with those of the intact PCP. Furthermore, the functional properties of the degraded fractions were different. PCP-16 most favourably affected GLP-1 secretion, while PCP-8 and PCP-24 exhibited the strongest antioxidant and enzyme inhibitory activities, respectively. Hence, controlled ultrasound irradiation is an appealing approach for partially degrading PCP and enhancing its bioactivity as a functional agent.

3.
Org Biomol Chem ; 22(13): 2677, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38477554

RESUMO

Expression of Concern for 'Conjugation of substituted naphthalimides to polyamines as cytotoxic agents targeting the Akt/mTOR signal pathway' by Zhi-Yong Tian et al., Org. Biomol. Chem., 2009, 7, 4651-4660, https://doi.org/10.1039/B912685F.

4.
Nat Commun ; 15(1): 450, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38200015

RESUMO

Argonaute (Ago) proteins are ubiquitous across all kingdoms of life. Eukaryotic Agos (eAgos) use small RNAs to recognize transcripts for RNA silencing in eukaryotes. In contrast, the functions of prokaryotic counterparts (pAgo) are less well known. Recently, short pAgos in conjunction with the associated TIR or Sir2 (SPARTA or SPARSA) were found to serve as antiviral systems to combat phage infections. Herein, we present the cryo-EM structures of nicotinamide adenine dinucleotide (NAD+)-bound SPARSA with and without nucleic acids at resolutions of 3.1 Å and 3.6 Å, respectively. Our results reveal that the APAZ (Analogue of PAZ) domain and the short pAgo form a featured architecture similar to the long pAgo to accommodate nucleic acids. We further identified the key residues for NAD+ binding and elucidated the structural basis for guide RNA and target DNA recognition. Using structural comparisons, molecular dynamics simulations, and biochemical experiments, we proposed a putative mechanism for NAD+ hydrolysis in which an H186 loop mediates nucleophilic attack by catalytic water molecules. Overall, our study provides mechanistic insight into the antiphage role of the SPARSA system.


Assuntos
Bacteriófagos , Ácidos Nucleicos , NAD , RNA Guia de Sistemas CRISPR-Cas , Proteínas Argonautas/genética , Bacteriófagos/genética
5.
Angew Chem Int Ed Engl ; 63(8): e202315599, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38169100

RESUMO

Polypeptides, as natural polyelectrolytes, are assembled into tailored proteins to integrate chromophores and catalytic sites for photosynthesis. Mimicking nature to create the water-soluble nanoassemblies from synthetic polyelectrolytes and photocatalytic molecular species for artificial photosynthesis is still rare. Here, we report the enhancement of the full-spectrum solar-light-driven H2 production within a supramolecular system built by the co-assembly of anionic metalloporphyrins with cationic polyelectrolytes in water. This supramolecular photocatalytic system achieves a H2 production rate of 793 and 685 µmol h-1 g-1 over 24 h with a combination of Mg or Zn porphyrin as photosensitizers and Cu porphyrin as a catalyst, which is more than 23 times higher than that of free molecular controls. With a photosensitizer to catalyst ratio of 10000 : 1, the highest H2 production rate of >51,700 µmol h-1 g-1 with a turnover number (TON) of >1,290 per molecular catalyst was achieved over 24 h irradiation. The hierarchical self-assembly not only enhances photostability through forming ordered stackings of the metalloporphyrins but also facilitates both energy and electron transfer from antenna molecules to catalysts, and therefore promotes the photocatalysis. This study provides structural and mechanistic insights into the self-assembly enhanced photostability and catalytic performance of supramolecular photocatalytic systems.

6.
J Biomol Struct Dyn ; : 1-12, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38111151

RESUMO

Cancer remains one of the most pressing challenges to global healthcare, exerting a significant impact on patient life expectancy. Cancer metastasis is a critical determinant of the lethality and treatment resistance of cancer. The urokinase-type plasminogen activator receptor (uPAR) shows great potential as a target for anticancer and antimetastatic therapies. In this work, we aimed to identify potential uPAR inhibitors by structural dynamics-based virtual screenings against a natural product library on four representative apo-uPAR structural models recently derived from long-timescale molecular dynamics (MD) simulations. Fifteen potential inhibitors (NP1-NP15) were initially identified through molecular docking, consensus scoring, and visual inspection. Subsequently, we employed MD-based molecular mechanics-generalized Born surface area (MM-GBSA) calculations to evaluate their binding affinities to uPAR. Structural dynamics analyses further indicated that all of the top 6 compounds exhibited stable binding to uPAR and interacted with the critical residues in the binding interface between uPAR and its endogenous ligand uPA, suggesting their potential as uPAR inhibitors by interrupting the uPAR-uPA interaction. We finally predicted the ADMET properties of these compounds. The natural products NP5, NP12, and NP14 with better binding affinities to uPAR than the uPAR inhibitors previously discovered by us were proven to be potentially orally active in humans. This work offers potential uPAR inhibitors that may contribute to the development of novel effective anticancer and antimetastatic therapeutics.Communicated by Ramaswamy H. Sarma.

7.
Carbohydr Res ; 534: 108967, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37844370

RESUMO

A series of novel tricyclic quinazolinone-iminosugars 5 and their derivatives 7 were obtained from the tosylated sugars by three steps. Firstly, the reaction of the isopropylidene protected sugar tosylate 1 and o-aminobenzylamine 2 generated the precursor tricyclic quinazolin-iminosuar 3, which was then oxidized by KMnO4 to produce the corresponding quinazolinone 4. Finally, removal of the isopropylidene group yielded the target tricyclic quinazolinone iminosugars 5. In addition, quinazolinone-iminosugars 4ac, 4bc and 4cc who contain bromine in the aromatic region underwent Suzuki reaction with phenylboronic acid, followed with the removal of the isopropylidene group to afford the derivatives 7. This strategy will help to construct such fused multicyclic quinazolinone-iminosugars efficiently. Some compounds show certain inhibition against α-glucosidase (saccharomyce cerevisiae).


Assuntos
Imino Açúcares , Quinazolinonas , Quinazolinonas/farmacologia , Alcenos , alfa-Glucosidases , Imino Açúcares/farmacologia , Açúcares
8.
Support Care Cancer ; 31(12): 640, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37851143

RESUMO

PURPOSE: There are no well-recognized guidelines for antiemesis during concurrent chemoradiotherapy (CCRT) for cervical cancer (CC) and nasopharyngeal cancer (NPC) until now. The study was designed to assess the efficacy and safety of fosaprepitant combined with tropisetron and dexamethasone in preventing nausea and vomiting during 5 weeks of fractionated radiotherapy and concomitant weekly low-dose cisplatin chemotherapy in patients with CC or NPC. METHODS: Patients with CC or NPC were scheduled to receive fractionated radiotherapy and weekly cisplatin (25-40 mg/m2) chemotherapy for at least 5 weeks. Patients stratified by tumor type and induction chemotherapy were 1:1 randomly assigned to receive fosaprepitant, tropisetron, and dexamethasone or tropisetron plus dexamethasone as an antiemetic regimen. Efficacy was assessed primarily by the cumulative incidence of emesis after 5 weeks of treatment, and safety by adverse events (AEs). RESULTS: Between July 2020 and July 2022, 116 patients consented to the study of whom 103 were included in this interim analysis (fosaprepitant group [N = 52] vs control group [N = 51]). The cumulative incidence of emesis at 5 weeks (competing risk analysis) was 25% (95% CI 14.2-37.4) for the fosaprepitant group compared with 59% (95% CI 43.9-71.0) for the control group. There was a significantly lower cumulative risk of emesis in the fosaprepitant group (HR 0.35 [95% CI 0.19-0.64]; p < 0.001). Fosaprepitant was well tolerated as the incidences of adverse events in the two groups were comparable. CONCLUSION: The addition of fosaprepitant to tropisetron plus dexamethasone significantly reduced the risk of nausea and vomiting during 5 weeks of CCRT in patients with CC or NPC, and fosaprepitant was well tolerated. TRIAL REGISTRATION: The trial was registered with ClinicalTrials.gov on October 3, 2022, number NCT05564286.


Assuntos
Antieméticos , Antineoplásicos , Neoplasias Nasofaríngeas , Neoplasias do Colo do Útero , Feminino , Humanos , Cisplatino , Tropizetrona/uso terapêutico , Dexametasona , Antineoplásicos/efeitos adversos , Vômito/induzido quimicamente , Vômito/prevenção & controle , Estudos Prospectivos , Náusea/etiologia , Náusea/prevenção & controle , Náusea/tratamento farmacológico , Antieméticos/uso terapêutico , Neoplasias do Colo do Útero/tratamento farmacológico , Fracionamento da Dose de Radiação , Quimioterapia Combinada
9.
J Org Chem ; 88(17): 12445-12450, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37594367

RESUMO

An efficient and convenient strategy has been successfully developed for the preparation of novel furantetrahydroquinoline derivatives using d/l-ribose with a 2,3-O-isopropylidene group through the aza-Diels-Alder mechanism. This method has high atom and step economy, high stereoselectivity, and gram-scale synthesis (yield 67%).

10.
Int J Biol Macromol ; 247: 125698, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37414326

RESUMO

Antimicrobial peptides (AMPs) exert their biological functions by perturbation with cellular membrane. Conjugation of AMPs with photosensitizer (PS) is a promising strategy for enhancing the efficacy and reducing systemic toxicity of AMPs. However, it is still elusive how the conjugated PS impacts the perturbation of AMPs on cell membrane from molecular level. Here, we addressed this issue by a multiscale computational strategy on pyropheophorbide-a (PPA) conjugated K6L9 (PPA-K6L9), a PS-AMP conjugate developed by us previously. Our atomistic molecular dynamics (MD) simulations revealed that the porphyrin moiety of PPA enhanced the stability of the conjugate in a lipid bilayer membrane model. Moreover, such moiety also maintained the amphipathic structure of K6L9, which is crucial for membrane pore formation. Coarse-grained MD simulations further showed that the conjugates aggregated in membrane environment and formed more stable toroidal pores with respect to K6L9 alone, suggesting the conjugation of PPA may enhance the membrane-disruption activity of K6L9. Consistent with this, our cellular experiments confirmed that PPA-K6L9 was more toxic to 4 T1 tumor cells than K6L9. This study provides insights into the mechanism by which PS-AMP conjugates disrupt cellular membranes and could aid in the design of more potent AMP conjugates.


Assuntos
Peptídeos Antimicrobianos , Fármacos Fotossensibilizantes , Fármacos Fotossensibilizantes/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Bicamadas Lipídicas/química , Membrana Celular/metabolismo , Simulação de Dinâmica Molecular
11.
J Biomol Struct Dyn ; : 1-9, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37349935

RESUMO

The rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) worldwide has led to over 600 million cases of coronavirus disease 2019 (COVID-19). Identifying effective molecules that can counteract the virus is imperative. SARS-CoV-2 macrodomain 1 (Mac1) represents a promising antiviral drug target. In this study, we predicted potential inhibitors of SARS-CoV-2 Mac1 from natural products using in silico-based screening. Based on the high-resolution crystal structure of Mac1 bound to its endogenous ligand ADP-ribose (ADPr), we first performed a docking-based virtual screening of Mac1 inhibitors against a natural product library and obtained five representative compounds (MC1-MC5) by clustering analysis. All five compounds were stably bound to Mac1 during 500 ns long molecular dynamics simulations. The binding free energy of these compounds to Mac1 was calculated using molecular mechanics generalized Born surface area and further refined with localized volume-based metadynamics. The results demonstrated that both MC1 (-9.8 ± 0.3 kcal/mol) and MC5 (-9.6 ± 0.3 kcal/mol) displayed more favorable affinities to Mac1 with respect to ADPr (-8.9 ± 0.3 kcal/mol), highlighting their potential as potent SARS-CoV-2 Mac1 inhibitors. Overall, this study provides potential SARS-CoV-2 Mac1 inhibitors, which may pave the way for developing effective therapeutics for COVID-19.Communicated by Ramaswamy H. Sarma.

12.
Nat Mater ; 22(6): 786-792, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37217702

RESUMO

Seeded growth of crystallizable block copolymers and π-stacking molecular amphiphiles in solution using living crystallization-driven self-assembly is an emerging route to fabricate uniform one-dimensional and two-dimensional core-shell micellar nanoparticles of controlled size with a range of potential applications. Although experimental evidence indicates that the crystalline core of these nanomaterials is highly ordered, a direct observation of their crystal lattice has not been successful. Here we report the high-resolution cryo-transmission electron microscopy studies of vitrified solutions of nanofibres made from a crystalline core of poly(ferrocenyldimethylsilane) (PFS) and a corona of polysiloxane grafted with 4-vinylpyridine groups. These studies show that poly(ferrocenyldimethylsilane) chains pack in an 8-nm-diameter core lattice with two-dimensional pseudo-hexagonal symmetry that is coated by a 27 nm 4-vinylpyridine corona with a 3.5 nm distance between each 4-vinylpyridine strand. We combine this structural information with a molecular modelling analysis to propose a detailed molecular model for solvated poly(ferrocenyldimethylsilane)-b-4-vinylpyridine nanofibres.

13.
Amino Acids ; 55(5): 563-578, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37067568

RESUMO

Diabetes mellitus (DM) is a severe chronic diseases with a global prevalence of 9%, leading to poor health and high health care costs, and is a direct cause of millions of deaths each year. The rising epidemic of diabetes and its complications, such as retinal and peripheral nerve disease, is a huge burden globally. A better understanding of the molecular pathways involved in the development and progression of diabetes and its complications can facilitate individualized prevention and treatment. High diabetes mellitus incidence rate is caused mainly by lack of non-invasive and reliable methods for early diagnosis, such as plasma biomarkers. The incidence of diabetes and its complications in the world still grows so it is crucial to develop a new, faster, high specificity and more sensitive diagnostic technologies. With the advancement of analytical techniques, metabolomics can identify and quantify multiple biomarkers simultaneously in a high-throughput manner, and effective biomarkers can greatly improve the efficiency of diabetes and its complications. By providing information on potential metabolic pathways, metabolomics can further define the mechanisms underlying the progression of diabetes and its complications, help identify potential therapeutic targets, and improve the prevention and management of T2D and its complications. The application of amino acid metabolomics in epidemiological studies has identified new biomarkers of diabetes mellitus (DM) and its complications, such as branched-chain amino acids, phenylalanine and arginine metabolites. This study focused on the analysis of metabolic amino acid profiling as a method for identifying biomarkers for the detection and screening of diabetes and its complications. The results presented are all from recent studies, and in all cases analyzed, there were significant changes in the amino acid profile of patients in the experimental group compared to the control group. This study demonstrates the potential of amino acid profiles as a detection method for diabetes and its complications.


Assuntos
Diabetes Mellitus Tipo 2 , Diabetes Mellitus , Humanos , Aminoácidos/metabolismo , Diabetes Mellitus/metabolismo , Biomarcadores , Metabolômica/métodos , Aminoácidos de Cadeia Ramificada , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/diagnóstico
14.
J Med Chem ; 66(8): 5415-5426, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-36854648

RESUMO

Diltiazem and glibenclamide are commonly used hypotensive and antidiabetic drugs. This study reports the discovery of the potential antitumor and antimetastatic effects of these two drugs using a structural dynamics-driven virtual screening targeting urokinase receptor (uPAR). Owing to uPAR's high flexibility, currently resolved crystal structures of uPAR, all in ligand-bound states, provide limited representations of its physiological conformation. To improve the accuracy of screening, we performed a long-timescale molecular dynamics simulation and obtained the representative conformations of apo-uPAR as the targets for our screening. Experimentally, we demonstrated that diltiazem and glibenclamide bound uPAR with KD values in the micromolar range. In addition, both compounds effectively suppressed tumor growth and metastasis in a uPAR-dependent manner in vitro and in vivo. This work not only provides two potent uPAR inhibitors but also reports a proof-of-concept study on the potential off-label antitumor and antimetastatic uses of diltiazem and glibenclamide.


Assuntos
Neoplasias , Ativador de Plasminogênio Tipo Uroquinase , Humanos , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Diltiazem , Glibureto , Neoplasias/patologia , Ligantes
15.
Phytomedicine ; 112: 154715, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36821999

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is a leading cause of cancer-associated mortality in the world. However, the anticancer effects of aucubin against HCC have yet to be reported. Cisplatin often decreased CD8+ tumor-infiltrating lymphocytes in the tumor microenvironment through increasing programmed death-ligand 1 (PD-L1) expression, which seriously affected the prognostic effect of cisplatin in the treatment of patients with HCC. Therefore, it is necessary to identify a novel therapeutic avenue to increase the sensitivity of cisplatin against HCC. PURPOSE: This study aims to evaluate the anti-tumor effect of aucubin on HCC, and also to reveal the synergistic effects and mechanism of aucubin and cisplatin against HCC. STUDY DESIGN AND METHODS: An H22 xenograft mouse model was established for the in vivo experiments. Cancer cell proliferation was detected by MTT assay. RT-qPCR was performed to analyze CD274 mRNA expression in vitro. Western blotting was employed to determine the expression levels of the PD-L1, p-Akt, Akt, p-ß-catenin, and ß-catenin in vitro. Immunofluorescence was carried out to examine ß-catenin nuclear accumulation in HCC cells. Immunohistochemistry was used to detect tumoral PD-L1 and CD8α expression in xenograft mouse model. RESULTS: Aucubin inhibits tumor growth in a xenograft HCC mouse model, but did not affect HCC cell viability in vitro. Aucubin treatment significantly inhibited PD-L1 expression through inactivating Akt/ß-catenin signaling pathway in HCC cells. Overexpression of PD-L1 dramatically reversed aucubin-mediated tumoral CD8+ T cell infiltration and alleviated the antitumor activity of aucubin in xenograft mouse model. Moreover, Cisplatin could induce the expression of PD-L1 through the activation of the Akt/ß-catenin signaling pathway in HCC cells, which can be blocked by aucubin in vitro. In xenograft mouse model, cisplatin treatment induced PD-L1 expression and alleviated the infiltration of CD8+ T lymphocytes in the tumor microenvironment. Aucubin not only abrogated cisplatin-induced PD-L1 expression but also enhanced the antitumor efficacy of cisplatin in a mouse xenograft model of HCC. CONCLUSION: Aucubin exerts antitumor activity against HCC and also enhances the antitumor activity of cisplatin by suppressing the Akt/ß-catenin/PD-L1 axis.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/metabolismo , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Antígeno B7-H1/metabolismo , Neoplasias Hepáticas/metabolismo , beta Catenina/metabolismo , Proteínas Proto-Oncogênicas c-akt , Linhagem Celular Tumoral , Microambiente Tumoral
16.
Biochem Pharmacol ; 208: 115378, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36513141

RESUMO

Understanding the mechanisms regulating PD-L1 expression in hepatocellular carcinoma (HCC) is important to improve the response rate to PD-1/PD-L1 blockade therapy. Here, we show that DKK1 expression is positively associated with PD-L1 expression and inversely correlated with CD8+ T cell infiltration in human HCC tumor specimens. In a subcutaneous xenograft tumor model, overexpression of DKK1 significantly promotes tumor growth, tumoral PD-L1 expression, but reduces tumoral CD8+ T cell infiltration; whereas knockdown of DKK1 has opposite effects. Moreover, enforced expression of DKK1 dramatically promotes PD-L1 expression, Akt activation, ß-catenin phosphorylation and total protein expression in HCC cells. By contrast, knockdown of DKK1 inhibits all, relative to controls. In addition, CKAP4 depletion, Akt inhibition, or ß-catenin depletion remarkably abrogates DKK1 overexpression-induced transcriptional expression of PD-L1 in HCC cells. Reconstituted expression of the active Akt1 largely increased PD-L1 transcriptional expression in HCC cells. Similarly, expression of WT ß-catenin, but not the phosphorylation-defective ß-catenin S552A mutant, significantly promotes PD-L1 expression. Correlation analysis of human HCC tumor specimens further revealed that DKK1 and PD-L1 expression were positively correlated with p-ß-catenin expression. Together, our findings revealed that DKK1 promotes PD-L1 expression through the activation of Akt/ß-catenin signaling, providing a potential strategy to enhance the clinical efficacy of PD-1/PD-L1 blockade therapy in HCC patients.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , beta Catenina/metabolismo , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Neoplasias Hepáticas/metabolismo , Receptor de Morte Celular Programada 1 , Proteínas Proto-Oncogênicas c-akt , Evasão Tumoral
17.
Turk Neurosurg ; 33(6): 945-950, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35929039

RESUMO

AIM: To explore the effect of pathogenesis-based individualised thrombectomy on the clinical results and prognoses of acute intracranial large-artery occlusion. MATERIAL AND METHODS: A total of 151 patients were included in this prospective study and divided into the control group (stent thrombectomy, 53 cases), a direct aspiration first pass technique (ADAPT) group (52 cases) and the stent group (stent thrombectomy or a combination of stent thrombectomy and ADAPT, 46 cases) based on whether stent or ADAPT was used. We compared and analysed the patients? general information, the National Institutes of Health Stroke Scale (NHISS) score at admission, the time between the end of arteriography and revascularisation, the number of thrombectomies, the modified Rankin scale (mRS) score at three months and complications in the three groups. RESULTS: Compared with the control group, the time between the end of arteriography and revascularisation in the ADAPT group was significantly reduced (p < 0.05), and the patency rate after one thrombectomy significantly increased (p < 0.05). The positive prognosis rate was significantly increased in the stent and ADAPT groups compared with the control group (p < 0.05). CONCLUSION: The application of the ADAPT technique in patients with embolism-induced cerebral infarction can reduce the time of revascularisation. The use of stents in patients with atherosclerosis-induced cerebral infarction can increase the patency rate after one thrombectomy.


Assuntos
Isquemia Encefálica , Acidente Vascular Cerebral , Humanos , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/etiologia , Acidente Vascular Cerebral/cirurgia , Isquemia Encefálica/complicações , Estudos Prospectivos , Estudos Retrospectivos , Trombectomia/efeitos adversos , Resultado do Tratamento , Infarto Cerebral/complicações , Artérias , Stents/efeitos adversos
18.
Cell Commun Signal ; 20(1): 175, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36348350

RESUMO

BACKGROUND: Spermine is frequently elevated in tumor tissues and body fluids of cancer patients and is critical for cancer cell proliferation, migration and invasion. However, the immune functions of spermine in hepatocellular carcinoma progression remains unknown. In the present study, we aimed to elucidate immunosuppressive role of spermine in hepatocellular carcinoma and to explore the underlying mechanism. METHODS: Whole-blood spermine concentration was measured using HPLC. Human primary HCC tissues were collected to examine the expression of CaSR, p-Akt, ß-catenin, STT3A, PD-L1, and CD8. Mouse model of tumorigenesis and lung metastasis were established to evaluate the effects of spermine on hepatocellular carcinoma. Western blotting, immunofluorescence, real time PCR, digital Ca2+ imaging, and chromatin immunoprecipitation assay were used to investigate the underlying mechanisms by which spermine regulates PD-L1 expression and glycosylation in hepatocellular carcinoma cells. RESULTS: Blood spermine concentration in the HCC patient group was significantly higher than that in the normal population group. Spermine could facilitate tumor progression through inducing PD-L1 expression and decreasing the CD8+ T cell infiltration in HCC. Mechanistically, spermine activates calcium-sensing receptor (CaSR) to trigger Ca2+ entry and thereby promote Akt-dependent ß-catenin stabilization and nuclear translocation. Nuclear ß-catenin induced by spermine then activates transcriptional expression of PD-L1 and N-glycosyltransferase STT3A, while STT3A in turn increases the stability of PD-L1 through inducing PD-L1 protein N-glycosylation in HCC cells. CONCLUSIONS: This study reveals the crucial function of spermine in establishing immune privilege by increasing the expression and N-glycosylation of PD-L1, providing a potential strategy for the treatment of hepatocellular carcinoma. Video Abstract.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Camundongos , Animais , Humanos , Carcinoma Hepatocelular/patologia , Antígeno B7-H1/metabolismo , beta Catenina , Neoplasias Hepáticas/patologia , Espermina/farmacologia , Proteínas Proto-Oncogênicas c-akt , Linhagem Celular Tumoral , Microambiente Tumoral
19.
Comput Intell Neurosci ; 2022: 6548811, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35909845

RESUMO

The efficient biological signal processing method can effectively improve the efficiency of researchers to explore the work of life mechanism, so as to better reveal the relationship between physiological structure and function, thus promoting the generation of major biological discoveries; high-precision medical signal analysis strategy can, to a certain extent, share the pressure of doctors' clinical diagnosis and assist them to formulate more favorable plans for disease prevention and treatment, so as to alleviate patients' physical and mental pain and improve the overall health level of the society. This article in biomedical signal is very representative of the two types of signals: mammary gland molybdenum target X-ray image (mammography) and the EEG signal as the research object, combined with the deep learning field of CNN; the most representative model is two kinds of biomedical signal classification, and reconstruction methods conducted a series of research: (1) a new classification method of breast masses based on multi-layer CNN is proposed. The method includes a CNN feature representation network for breast masses and a feature decision mechanism that simulates the physician's diagnosis process. By comparing with the objective classification accuracy of other methods for the identification of benign and malignant breast masses, the method achieved the highest classification accuracy of 97.0% under different values of c and gamma, which further verified the effectiveness of the proposed method in the identification of breast masses based on molybdenum target X-ray images. (2) An EEG signal classification method based on spatiotemporal fusion CNN is proposed. This method includes a multi-channel input classification network focusing on spatial information of EEG signals, a single-channel input classification network focusing on temporal information of EEG signals, and a spatial-temporal fusion strategy. Through comparative experiments on EEG signal classification tasks, the effectiveness of the proposed method was verified from the aspects of objective classification accuracy, number of model parameters, and subjective evaluation of CNN feature representation validity. It can be seen that the method proposed in this paper not only has high accuracy, but also can be well applied to the classification and reconstruction of biomedical signals.


Assuntos
Molibdênio , Redes Neurais de Computação , Eletroencefalografia/métodos , Humanos , Processamento de Sinais Assistido por Computador
20.
J Gastrointest Surg ; 26(10): 2033-2040, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35915374

RESUMO

BACKGROUND: Oesophageal replacement by colonic interposition remains a major challenge due to its complexity and high incidence of complications; here we applied the two-stage operation strategy to oesophageal replacement by colonic interposition in high-risk oesophageal cancer patients following gastrectomy. METHODS: We performed a retrospective analysis on the data of patients with a history of distal gastrectomy who underwent one-stage and two-stage oesophageal replacement by colonic interposition from February 2012 to February 2020, and explored the relationship between the staging strategy and postoperative outcomes. RESULTS: The clinical data of 93 patients were collected and analysed. There were no significant differences in the patients' characteristics between the two groups (all p > 0.05), except for comorbidities and Charlson Comorbidity Index (all p < 0.05). The Clavien-Dindo score between the two groups was also not significantly different (p > 0.05). The logistic regression models revealed that patients who had received preoperative therapy had a higher Clavien-Dindo score (p < 0.05), but the stage strategy did not (p > 0.05). CONCLUSIONS: The two-stage operation is feasible in high-risk patients who need to undergo colonic interposition for oesophageal replacement. At the same time, it lowers the technical threshold of colonic interposition for oesophageal replacement, increasing this surgical technique's acceptability.


Assuntos
Neoplasias Esofágicas , Neoplasias Gástricas , Neoplasias Esofágicas/etiologia , Gastrectomia/efeitos adversos , Humanos , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/cirurgia , Estudos Retrospectivos , Neoplasias Gástricas/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...