Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 406: 131059, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38950832

RESUMO

Bio-oil derived from biomass fast pyrolysis can be upgraded to gasoline and diesel alternatives by catalytic hydrodeoxygenation (HDO). Here, the novel nitrogen-doped carbon-alumina hybrid supported cobalt (Co/NCAn, n = 1, 2.5, 5) catalyst is established by a coagulation bath technique. The optimized Co/NCA2.5 catalyst presented 100 % conversion of guaiacol, high selectivity to cyclohexane (93.6 %), and extremely high deoxygenation degree (97.3 %), respectively. Therein, the formation of cyclohexanol was facilitated by stronger binding energy and greater charge transfer between Co and NC which was unraveled by density functional theory calculations. In addition, the appropriate amount of Lewis acid sites enhanced the cleavage of the C-O bond in cyclohexanol, finally resulting in a remarkable selectivity for cyclohexane. Finally, the Co/NCA2.5 catalyst also exhibited excellent selectivity (93.1 %) for high heating value hydrocarbon fuel in crude bio-oil HDO. This work provides a theoretical basis on N dopants collaborating alumina hybrid catalysts for efficient HDO reaction.


Assuntos
Óxido de Alumínio , Biocombustíveis , Carbono , Cobalto , Nitrogênio , Cobalto/química , Catálise , Óxido de Alumínio/química , Nitrogênio/química , Carbono/química , Cicloexanos/química , Óleos de Plantas , Polifenóis
2.
Environ Res ; 212(Pt D): 113486, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35597290

RESUMO

Membrane processes are widely applied in shale gas flowback and produced water (SGFPW) reuse. However, particulate matters and organic matters aggravate membrane fouling, which is one of the major restrictions on SGFPW reuse. The present study proposed fixed bed adsorption using granular activated carbon (GAC) combined with ultrafiltration (UF) for the first time to investigate the treatment performance and membrane fouling mechanism. The adsorption of GAC for SGFPW was best described by the Temkin isotherm model and the pseudo-second-order kinetic model. GAC fixed bed pretreatment with different empty bed contact times (EBCT) (30, 60 and 90 min) showed the significant removal rate for dissolved organic carbon (DOC) and turbidity, which was 34.7%-42.4% and 98.1%-98.9%, respectively. According to characterization of UF membrane fouling layer, particulate matters and organic matters caused major part of membrane fouling. After being treated by GAC fixed bed, total fouling index (TFI) and hydraulic irreversible fouling index (HIFI) respectively decreased by more than 32.5% and 18.3% respectively, showing the mitigation effect of GAC fixed bed on membrane fouling. According to the XDLVO theory, GAC fixed bed also mitigated membrane fouling by reducing the hydrophobic interactions between the foulants and the UF membrane. The integrated GAC fixed bed-UF process produced high-quality effluents that met the water quality standards of SGFPW internal reuse, which was an effective technology of the SGFPW reuse.


Assuntos
Ultrafiltração , Purificação da Água , Adsorção , Carvão Vegetal/química , Membranas Artificiais , Gás Natural , Águas Residuárias/química
3.
Environ Sci Pollut Res Int ; 29(42): 63393-63406, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35459994

RESUMO

With the extensive use of nonferrous metals and metal catalysts, solid wastes containing heavy metals release metal ions into soil and surface water through erosion and leaching. This is one of the major threats to the global environment and human health. Studying the characteristics and impact factors of heavy metal leaching from solid waste is a critical part of managing spent catalysts and environmental risk. In this work, the characteristics of and factors that influence leaching and seepage release from typical spent catalysts and lead-zinc smelting slag were studied. The results indicated that metal ions leached more easily in an acidic environment (pH 4.5) and an environment with DOM than in a neutral environment (pH 7.0). Metal ion leaching was favored by a liquid-to-solid ratio of 20:1. The concentrations of metal ions released from the spent catalysts in sequential leaching experiments were higher than those in column leaching experiments. Leaching of metal ions in the presence of different leaching agents and from different spent catalysts can be described by different controlling models of the shrinking core model, but changes in the liquid-to-solid ratio showed no obvious correlation with changes in the metal release mechanism. These results provide important information for spent catalyst management and risk prevention and control.


Assuntos
Metais Pesados , Resíduos Sólidos , Humanos , Metais Pesados/análise , Solo , Água , Zinco/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA