Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38082820

RESUMO

Atrial fibrillation (AF) is a common cardiac arrhythmia, and its early detection is crucial for timely treatment. Conventional methods, such as Electrocardiogram (ECG), can be intrusive and require specialized equipment, whereas Photoplethysmography (PPG) offers a non-invasive alternative. In this study, we present a feature fusion approach for AF detection using attention-based Bidirectional Long Short-Term Memory (BiLSTM) and PPG signals. We extract frequency domain (FD) and time domain (TD) features from PPG signals, combine them with deep learning features generated from an attention-based BiLSTM network, and pass the fusion features through a softmax function. Our approach achieves high accuracy (96.5%) and favorable performance metrics (recall 93.20%, precision 94.50%, and F-score 93.09%), improving AF prediction and diagnosis, and providing support for clinicians in their diagnostic processes.


Assuntos
Fibrilação Atrial , Humanos , Fibrilação Atrial/diagnóstico , Doença do Sistema de Condução Cardíaco , Fotopletismografia , Eletrocardiografia
2.
Front Physiol ; 14: 1148717, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37025385

RESUMO

Background and Objective: Cardiovascular disease is a high-fatality health issue. Accurate measurement of cardiovascular function depends on precise segmentation of physiological structure and accurate evaluation of functional parameters. Structural segmentation of heart images and calculation of the volume of different ventricular activity cycles form the basis for quantitative analysis of physiological function and can provide the necessary support for clinical physiological diagnosis, as well as the analysis of various cardiac diseases. Therefore, it is important to develop an efficient heart segmentation algorithm. Methods: A total of 275 nuclear magnetic resonance imaging (MRI) heart scans were collected, analyzed, and preprocessed from Huaqiao University Affiliated Strait Hospital, and the data were used in our improved deep learning model, which was designed based on the U-net network. The training set included 80% of the images, and the remaining 20% was the test set. Based on five time phases from end-diastole (ED) to end-systole (ES), the segmentation findings showed that it is possible to achieve improved segmentation accuracy and computational complexity by segmenting the left ventricle (LV), right ventricle (RV), and myocardium (myo). Results: We improved the Dice index of the LV to 0.965 and 0.921, and the Hausdorff index decreased to 5.4 and 6.9 in the ED and ES phases, respectively; RV Dice increased to 0.938 and 0.860, and the Hausdorff index decreased to 11.7 and 12.6 in the ED and ES, respectively; myo Dice increased to 0.889 and 0.901, and the Hausdorff index decreased to 8.3 and 9.2 in the ED and ES, respectively. Conclusion: The model obtained in the final experiment provided more accurate segmentation of the left and right ventricles, as well as the myocardium, from cardiac MRI. The data from this model facilitate the prediction of cardiovascular disease in real-time, thereby providing potential clinical utility.

3.
Comput Methods Programs Biomed ; 229: 107200, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36525713

RESUMO

OBJECTIVE: Lung image classification-assisted diagnosis has a large application market. Aiming at the problems of poor attention to existing translation models, the insufficient ability of key transfer and generation, insufficient quality of generated images, and lack of detailed features, this paper conducts research on lung medical image translation and lung image classification based on generative adversarial networks. METHODS: This paper proposes a medical image multi-domain translation algorithm MI-GAN based on the key migration branch. After the actual analysis of the imbalanced medical image data, the key target domain images are selected, the key migration branch is established, and a single generator is used to complete the medical image multi-domain translation. The conversion between domains ensures the attention performance of the medical image multi-domain translation model and the quality of the synthesized images. At the same time, a lung image classification model based on synthetic image data augmentation is proposed. The synthetic lung CT medical images and the original real medical images are used as the training set together to study the performance of the auxiliary diagnosis model in the classification of normal healthy subjects, and also of the mild and severe COVID-19 patients. RESULTS: Based on the chest CT image dataset, MI-GAN has completed the mutual conversion and generation of normal lung images without disease, viral pneumonia and Mild COVID-19 images. The synthetic images GAN-test and GAN-train indicators reached, respectively 92.188% and 85.069%, compared with other generative models in terms of authenticity and diversity, there is a considerable improvement. The accuracy rate of pneumonia diagnosis of the lung image classification model is 93.85%, which is 3.1% higher than that of the diagnosis model trained only with real images; the sensitivity of disease diagnosis is 96.69%, a relative improvement of 7.1%. 1%, the specificity was 89.70%; the area under the ROC curve (AUC) increased from 94.00% to 96.17%. CONCLUSION: In this paper, a multi-domain translation model of medical images based on the key transfer branch is proposed, which enables the translation network to have key transfer and attention performance. It is verified on lung CT images and achieved good results. The required medical images are synthesized by the above medical image translation model, and the effectiveness of the synthesized images on the lung image classification network is verified experimentally.


Assuntos
COVID-19 , Pneumonia Viral , Humanos , COVID-19/diagnóstico por imagem , Algoritmos , Área Sob a Curva , Pulmão/diagnóstico por imagem , Processamento de Imagem Assistida por Computador
4.
Comput Methods Programs Biomed ; 226: 107049, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36274507

RESUMO

OBJECTIVE: The segmentation and categorization of fibrotic tissue in time-lapse enhanced MRI scanning are quite challenging, and it is mainly done manually for myocardial DE-MRI images. On the other hand, DE-MRI instructions for segmenting and classifying cardiac hypertrophy are complex and prone to inaccuracy. Developing cardiac DE-MRI classification and prediction methods is crucial. METHODS: This paper introduces a self-supervised myocardial histology segmentation algorithm with multi-scale portrayal consistency to address the degree of sophistication of cardiology DE-MRI. The model retrieves multi-scale representations from multiple expanded viewpoints using a Siamese system and uses resemblance learning instruction to achieve unlabeled representations. The DE-MRI data train the network weights to generate a superior segmentation effect by accurately reflecting the exact scale information. The paper provides an end-to-end method for detecting myocardial fibrosis tissue using a Transformer as a result of the poor classification outcomes of myocardial fibrosis substance in DE-MRI. A deep learning model is created using the Pre-LN Transformer decoded simultaneously with the Multi-Scale Transformer backbone structure developed in this paper. In addition, the joint regression cost, which incorporates the CIoU Loss and the L1 Loss, is used to determine the distance between forecast blocks and labels. RESULTS: Increasing the independent evaluation and annotations position compared enhances performance compared to the segmentation method without canvas matching by 1.76%, 1.27%, 0.93%, and -1.17 mm on Dice, PPV, SEN, and HD, respectively. Based on the strongest of the three single-scale representation methodologies, the segmentation model in this study is enhanced by 0.71%, 0.79%, and 1.47%, as well as -1.49 mm on Dice, PPV, SEN, and HD, respectively. The effectiveness and reliability of the segmentation model are confirmed. Additionally, testing results show that this study's recognition system's mAP is 84.97%, which is greater than the benchmark techniques used in most other studies. The framework converges round is compressed by 18.1% compared to the DETR detection approach, and the identification rate is improved by 3.5%, proving the strategy's value. CONCLUSION: The self-supervised cardiac fibrosis segmentation method with multi-scale portrayal consistency and end-to-end myocardial histology categorization is introduced in this study. To solve the challenges of segmentation and myocardial fibrosis identification in cardiology DE-MRI, a Transformer-based detection approach is put forth. It may address the issue of the myocardial scarring material's low accuracy in segmentation and classification in DE-MRI, as well as provide clinicians with a fibrosis diagnosis that is supplementary to the conventional therapy of heart ailments.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Humanos , Processamento de Imagem Assistida por Computador/métodos , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/métodos , Algoritmos , Fibrose
5.
Comput Methods Programs Biomed ; 226: 107055, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36183637

RESUMO

OBJECTIVE: Inefficient circulatory system due to blockage of blood vessels leads to myocardial infarction and acute blockage. Myocardial infarction is frequently classified and diagnosed in medical treatment using MRI, yet this method is ineffective and prone to error. As a result, there are several implementation scenarios and clinical significance for employing deep learning to develop computer-aided algorithms to aid cardiologists in the routine examination of cardiac MRI. METHODS: This research uses two distinct domain classifiers to address this issue and achieve domain adaptation between the particular field and the specific part is a problem Current research on environment adaptive systems cannot effectively obtain and apply classification information for unsupervised scenes of target domain images. Insufficient information interchange between specific domains and specific domains is a problem. In this study, two different domain classifiers are used to solve this problem and achieve domain adaption. To effectively mine the source domain images for classification understanding, an unsupervised MRI classification technique for myocardial infarction called CardiacCN is proposed, which relies on adversarial instructions related to the interpolation of confusion specimens in the target domain for the conflict of confusion specimens for the target domain classification task. RESULTS: The experimental results demonstrate that the CardiacCN model in this study performs better on the six domain adaption tasks of the Sunnybrook Cardiac Dataset (SCD) dataset and increases the mean target area myocardial infarction MRI classification accuracy by approximately 1.2 percent. The classification performance of the CardiacCN model on the target domain does not vary noticeably when the temperature-controlled duration hyper-parameter rl falls in the region of 5-30. According to the experimental findings, the CardiacCN model is more resistant to the excitable rl. The CardiacCN model suggested in this research may successfully increase the accuracy of the source domain predictor for the target domain myocardial infarction clinical scanning classification in unsupervised learning, as shown by the visualization analysis infrastructure provision nurture. It is evident from the visualization assessment of embedded features that the CardiacCN model may significantly increase the source domain classifier's accuracy for the target domain's classification of myocardial infarction in clinical scans under unsupervised conditions. CONCLUSION: To address misleading specimens with the inconsistent classification of target-domain myocardial infarction medical scans, this paper introduces the CardiacCN unsupervised domain adaptive MRI classification model, which relies on adversarial learning associated with resampling target-domain confusion samples. With this technique, implicit image classification information from the target domain is fully utilized, knowledge transfer from the target domain to the specific domain is encouraged, and the classification effect of the myocardial ischemia medical scan is improved in the target domain of the unsupervised scene.


Assuntos
Algoritmos , Infarto do Miocárdio , Humanos , Imageamento por Ressonância Magnética , Infarto do Miocárdio/diagnóstico por imagem
6.
Comput Methods Programs Biomed ; 225: 107041, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35994871

RESUMO

OBJECTIVE: It is essential to utilize cardiac delayed-enhanced magnetic resonance imaging (DE-MRI) to diagnose cardiovascular disease. By segmenting myocardium DE-MRI images, it provides critical information for the evaluation and treatment of myocardial infarction. As a consequence, it is vital to investigate the segmentation and classification technique of myocardial DE-MRI. METHODS: Firstly, an end-to-end minimally supervised and semi-supervised semantic DE-MRI myocardial fibrosis segmentation framework is proposed, which combines image classification and semantic segmentation branches based on the self-attention mechanism. Following that, a residual hole network fused with the dual attention mechanism was built, and a double attention metabolic pathway classification method for cardiac fibrosis in DE-MRI images was developed. RESULTS: By adding pixel-level labels to an extra 40 training images, the segmentation model may enhance semantic segmentation performance by 2.6 percent (from 61.2 percent to 63.8 percent). When the number of pixel-level labels is increased to 80, semi-supervised feature extraction increases by 4.7 percent when compared to weakly guided semantic segmentation. Adding an attention mechanism to the critical network DRN (Deep Residual Network) can increase the classifier's performance by a small amount. Experiments revealed that the models worked effectively. CONCLUSION: This paper investigates the segmentation and classification of cardiac fibrosis in DE-MRI data using a semi-supervised semantic segmentation and dual attention mechanism, dealing with the issue that existing segmentation algorithms have difficulty segmenting myocardial fibrosis tissue. In the future, we can consider optimizing the design of the attention module to reduce the module computation.


Assuntos
Processamento de Imagem Assistida por Computador , Semântica , Algoritmos , Fibrose , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos
7.
Comput Methods Programs Biomed ; 225: 107053, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35964421

RESUMO

OBJECTIVE: Nowadays, COVID-19 is spreading rapidly worldwide, and seriously threatening lives . From the perspective of security and economy, the effective control of COVID-19 has a profound impact on the entire society. An effective strategy is to diagnose earlier to prevent the spread of the disease and prompt treatment of severe cases to improve the chance of survival. METHODS: The method of this paper is as follows: Firstly, the collected data set is processed by chest film image processing, and the bone removal process is carried out in the rib subtraction module. Then, the set preprocessing method performed histogram equalization, sharpening, and other preprocessing operations on the chest film. Finally, shallow and high-level feature mapping through the backbone network extracts the processed chest radiographs. We implement the self-attention mechanism in Inception-Resnet, perform the standard classification, and identify chest radiograph diseases through the classifier to realize the auxiliary COVID-19 diagnosis process at the medical level, all in an effort to further enhance the classification performance of the convolutional neural network. Numerous computer simulations demonstrate that the Inception-Resnet convolutional neural network performs CT image categorization and enhancement with greater efficiency and flexibility than conventional segmentation techniques. RESULTS: The experimental COVID-19 CT dataset obtained in this paper is the new data for CT scans and medical imaging of normal, early COVID-19 patients and severe COVID-19 patients from Jinyintan hospital. The experiment plots the relationship between model accuracy, model loss and epoch, using ACC, TPR, SPE, F1 score and G-mean to measure the image maps of patients with and without the disease. Statistical measurement values are obtained by Inception-Resnet are 88.23%, 83.45%, 89.72%, 95.53% and 88.74%. The experimental results show that Inception-Resnet plays a more effective role than other image classification methods in evaluation indicators, and the method has higher robustness, accuracy and intuitiveness. CONCLUSION: With CT images in the clinical diagnosis of COVID-19 images being widely used and the number of applied samples continuously increasing, the method in this paper is expected to become an additional diagnostic tool that can effectively improve the diagnostic accuracy of clinical COVID-19 images.


Assuntos
COVID-19 , COVID-19/diagnóstico por imagem , Teste para COVID-19 , Humanos , Processamento de Imagem Assistida por Computador/métodos , Pulmão/diagnóstico por imagem , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA