Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Signal Transduct Target Ther ; 8(1): 112, 2023 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-36906608

RESUMO

The fast-developing synthetic biology (SB) has provided many genetic tools to reprogram and engineer cells for improved performance, novel functions, and diverse applications. Such cell engineering resources can play a critical role in the research and development of novel therapeutics. However, there are certain limitations and challenges in applying genetically engineered cells in clinical practice. This literature review updates the recent advances in biomedical applications, including diagnosis, treatment, and drug development, of SB-inspired cell engineering. It describes technologies and relevant examples in a clinical and experimental setup that may significantly impact the biomedicine field. At last, this review concludes the results with future directions to optimize the performances of synthetic gene circuits to regulate the therapeutic activities of cell-based tools in specific diseases.


Assuntos
Engenharia Celular , Desenvolvimento de Medicamentos , Biologia Sintética/métodos
2.
Angew Chem Int Ed Engl ; 61(45): e202211382, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36102578

RESUMO

Class III lanthipeptide synthetases catalyze the formation of lanthionine/methyllanthionine and labionin crosslinks. We present here the 2.40 Šresolution structure of the kinase domain of a class III lanthipeptide synthetase CurKC from the biosynthesis of curvopeptin. A unique structural subunit for leader binding, named leader recognition domain (LRD), was identified. The LRD of CurKC is responsible for the recognition of the leader peptide and for mediating interactions between the lyase and kinase domains. LRDs are highly conserved among the kinase domains of class III and class IV lanthipeptide synthetases. The discovery of LRDs provides insight into the substrate recognition and domain organization in multidomain lanthipeptide synthetases.


Assuntos
Ligases , Ligases/metabolismo
3.
Nat Chem Biol ; 18(7): 724-732, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35513512

RESUMO

Lanthipeptides are an important group of natural products with diverse biological functions, and their biosynthesis requires the removal of N-terminal leader peptides (LPs) by designated proteases. LanPM1 enzymes, a subgroup of M1 zinc-metallopeptidases, have been recently identified as bifunctional proteases with both endo- and aminopeptidase activities to remove LPs of class III and class IV lanthipeptides. Herein, we report the biochemical and structural characterization of EryP as the LanPM1 enzyme from the biosynthesis of class III lanthipeptide erythreapeptin. We determined X-ray crystal structures of EryP in three conformational states, the open, intermediate and closed states, and identified a unique interdomain Ca2+ binding site as a regulatory element that modulates its domain dynamics and proteolytic activity. Inspired by this regulatory Ca2+ binding, we developed a strategy to engineer LanPM1 enzymes for enhanced catalytic activities by strengthening interdomain associations and driving the conformational equilibrium toward their closed forms.


Assuntos
Lipopolissacarídeos , Zinco , Metaloproteases/metabolismo , Peptídeo Hidrolases/metabolismo , Peptídeos/metabolismo , Sinais Direcionadores de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...