Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Arch Oral Biol ; 131: 105265, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34601318

RESUMO

OBJECTIVE: Sodium fluoride (NaF) plays an important role in preventing dental caries. However, the regulatory effect of NaF on the committed differentiation of DPSCs is not fully understood. In this study, we characterized the impact of micromolar levels of NaF on the osteo/odontogenic differentiation of DPSCs. DESIGN: DPSCs were isolated from healthy human third molars and were cultured in conditioned media with different concentrations of NaF. RNA sequencing (RNA-seq) combined with Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis was used to assess the pathways regulated by NaF. Alkaline phosphatase activity, Alizarin red staining, Western blotting, and real-time qRT-PCR were used to determine the osteo/odontogenic differentiation in DPSCs treated with NaF. RESULTS: NaF significantly promoted the osteo/odontogenic differentiation of DPSCs at micromolar levels. Furthermore, RNA-seq and KEGG pathway enrichment analysis indicated that the PI3K/AKT pathway was involved in the pro-osteoclastogenesis effect of NaF. Western blotting analysis exhibited that the phosphorylation of AKT was decreased in NaF-treated DPSCs. Chemical inhibition of the PI3K/AKT pathway abrogated the NaF-promoted DPSCs osteo/odontogenic differentiation. CONCLUSION: Micromolar NaF can promote the osteo/odontogenic differentiation of DPSCs by inhibiting the PI3K/AKT pathway. DATA AVAILABILITY: The data used to support the findings of this study are available from the corresponding author upon request.


Assuntos
Cárie Dentária , Polpa Dentária , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Humanos , Odontogênese , Osteogênese , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Fluoreto de Sódio/farmacologia , Células-Tronco
3.
Stem Cells Int ; 2021: 5560872, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34603453

RESUMO

Dental pulp stem cells (DPSCs) must undergo odontoblastic differentiation in order to facilitate the process of dentin-pulp complex repair. Herein, we sought to explore the ability of Neu5Ac (one form of sialic acid) to influence DPSC osteo-/odontoblastic differentiation via modulating mitogen-activated protein kinase (MAPK) signaling. Methodology. DPSCs were isolated from human third permanent teeth and were grown in vitro. Fluorescent microscopy was used to detect the existence of sialic acid on the DPSC membrane. Following the treatment of different concentrations of Neu5Ac and removing sialic acid from the cell surface by neuraminidase, the osteo-/odontoblastic differentiation of these cells was evaluated via mineralization, alkaline phosphatase, and in vivo assays. In addition, the expression of genes related to osteo-/odontoblastic differentiation and MAPK signaling at different stages of this differentiation process was analyzed in the presence or absence of Neu5Ac. Results. The existence of sialic acid on the DPSC membrane was confirmed by fluorescent microscopy, and the ability of osteo-/odontoblastic differentiation was decreased after removing sialic acid by neuraminidase. Treatment of DPSCs with Neu5Ac (0.1 mM or 1 mM) significantly enhanced their mineralization ability and alkaline phosphatase activity. The expression levels of DMP1, DSPP, BSP, and RUNX2 were also increased. Treatment of nude mice with ManNAc (the prerequisite form of Neu5Ac) also enhanced DPSC mineralization activity in vivo. Furthermore, Neu5Ac treatment enhanced p-ERK expression in DPSCs, while ERK pathway inhibition disrupted the ability of Neu5Ac to enhance the osteo-/odontoblastic differentiation of these cells. Conclusions. Neu5Ac can promote DPSC osteo-/odontoblastic differentiation through a process associated with the modulation of the ERK signaling pathway activity.

4.
Mar Drugs ; 19(7)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201595

RESUMO

Penicillium oxalicum k10 isolated from soil revealed the hydrolyzing ability of shrimp chitin and antifungal activity against Sclerotinia sclerotiorum. The k10 chitinase was produced from a powder chitin-containing medium and purified by ammonium sulfate precipitation and column chromatography. The purified chitinase showed maximal activity toward colloidal chitin at pH 5 and 40 °C. The enzymatic activity was enhanced by potassium and zinc, and it was inhibited by silver, iron, and copper. The chitinase could convert colloidal chitin to N-acetylglucosamine (GlcNAc), (GlcNAc)2, and (GlcNAc)3, showing that this enzyme had endocleavage and exocleavage activities. In addition, the chitinase prevented the mycelial growth of the phytopathogenic fungi S. sclerotiorum and Mucor circinelloides. These results indicate that k10 is a potential candidate for producing chitinase that could be useful for generating chitooligosaccharides from chitinous waste and functions as a fungicide.


Assuntos
Antifúngicos/farmacologia , Quitina/química , Quitinases/farmacologia , Penicillium/química , Animais , Organismos Aquáticos , Fungos/efeitos dos fármacos
5.
Oxid Med Cell Longev ; 2020: 8096847, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32908639

RESUMO

Acetaminophen (APAP) toxicity is the leading cause of drug-induced liver failure, which is closely related to mitochondrial dysfunction and oxidative damage. Studies in clinical trials and in animal models have shown that omega-3 polyunsaturated fatty acids (n-3 PUFAs) affect the progression of various types of liver damage. Interestingly, the sex-dependent effect of n-3 PUFAs on human health has also been well documented. However, it is unknown whether supplementation of n-3 PUFAs modulates the pathogenesis of APAP-induced liver failure with sex-specificity. Our results showed that both endogenous and exogenous n-3 PUFAs significantly aggravated the APAP-induced liver injury in male mice, whereas the opposite effects were observed in females. In vivo and in vitro studies demonstrated that estrogen contributes to the gender difference in the regulation of n-3 PUFAs on APAP overdose. We found that n-3 PUFA-mediated regulation of hepatic oxidative stress response and autophagy upon APAP challenge is distinct between male and female mice. Moreover, we provided evidence that ß-catenin signaling activation is responsible for the sex-dependent regulation of APAP hepatotoxicity by n-3 PUFAs. Together, these findings indicated that supplementation with n-3 PUFAs displays sex-differential effect on APAP hepatotoxicity and could have profound significance in the clinical management for drug-induced liver injury.


Assuntos
Acetaminofen/efeitos adversos , Ácidos Graxos Ômega-3/uso terapêutico , Falência Hepática Aguda/induzido quimicamente , Falência Hepática Aguda/tratamento farmacológico , Caracteres Sexuais , Animais , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Estrogênios/metabolismo , Ácidos Graxos Ômega-3/farmacologia , Feminino , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...