Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1183739, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37324716

RESUMO

Wild rice (Zizania spp.), an aquatic grass belonging to the subfamily Gramineae, has a high economic value. Zizania provides food (such as grains and vegetables), a habitat for wild animals, and paper-making pulps, possesses certain medicinal values, and helps control water eutrophication. Zizania is an ideal resource for expanding and enriching a rice breeding gene bank to naturally preserve valuable characteristics lost during domestication. With the Z. latifolia and Z. palustris genomes completely sequenced, fundamental achievements have been made toward understanding the origin and domestication, as well as the genetic basis of important agronomic traits of this genus, substantially accelerating the domestication of this wild plant. The present review summarizes the research results on the edible history, economic value, domestication, breeding, omics research, and important genes of Z. latifolia and Z. palustris over the past decades. These findings broaden the collective understanding of Zizania domestication and breeding, furthering human domestication, improvement, and long-term sustainability of wild plant cultivation.

2.
Food Res Int ; 162(Pt B): 112082, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36461331

RESUMO

Chinese wild rice (Zizania latifolia) is rich in flavonoids and the characteristic colour of its pericarp is attributed to the flavonoids. In this study, the molecular basis of the colour change in the pericarp of Chinese wild rice was studied using metabolomics and proteomics. Whole seeds in three developmental stages (10, 20, and 30 days after flowering) were characterised based on phenolic contents, free amino acids (FAAs), and the expression level and activities of enzymes critical in flavonoid biosynthesis. The total phenolic and proanthocyanidin contents of Chinese wild rice increased gradually, whereas total flavonoid and FAA contents decreased during seed development. Metabolomic analysis revealed gradual upward trends for 57 flavonoids (sub classes 1, 3, and 10) related to colour change in the pericarp. Proteomic analysis showed that the phenylpropanoid biosynthesis metabolic pathway was enriched with differentially expressed proteins and was associated with flavonoid biosynthesis. Proteomic data suggested that leucoanthocyanidin reductase and WD40 repeat protein may be involved in flavonoid biosynthesis in Chinese wild rice, which was also verified by real-time quantitative PCR. Our results provide new insights into the understanding of the colour formation in the pericarp of Chinese wild rice.


Assuntos
Oryza , China , Cor , Flavonoides , Oryza/genética , Fenóis , Poaceae , Proteômica
3.
Int J Mol Sci ; 23(24)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36555582

RESUMO

The loss of seed shattering is an important event in crop domestication, and elucidating the genetic mechanisms underlying seed shattering can help reduce yield loss during crop production. This study is the first to systematically identify and analyse the BELL family of transcription factor-encoding genes in Chinese wild rice (Zizania latifolia). ZlqSH1a (Zla04G033720) and ZlqSH1b (Zla02G027130) were identified as key candidate genes involved in seed shattering in Z. latifolia. These genes were involved in regulating the development of the abscission layer (AL) and were located in the nucleus of the cell. Over-expression of ZlqSH1a and ZlqSH1b resulted in a complete AL between the grain and pedicel and significantly enhanced seed shattering after grain maturation in rice. Transcriptome sequencing revealed that 172 genes were differentially expressed between the wild type (WT) and the two transgenic (ZlqSH1a and ZlqSH1b over-expressing) plants. Three of the differentially expressed genes related to seed shattering were validated using qRT-PCR analysis. These results indicate that ZlqSH1a and ZlqSH1b are involved in AL development in rice grains, thereby regulating seed shattering. Our results could facilitate the genetic improvement of seed-shattering behaviour in Z. latifolia and other cereal crops.


Assuntos
Oryza , Domesticação , Genes de Plantas , Sementes , Grão Comestível/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...