Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 35(24): e2300586, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36930795

RESUMO

Brittle topologically close-packed precipitates form in many advanced alloys. Due to their complex structures, little is known about their plasticity. Here, a strategy is presented to understand and tailor the deformability of these complex phases by considering the Nb-Co µ-phase as an archetypal material. The plasticity of the Nb-Co µ-phase is controlled by the Laves phase building block that forms parts of its unit cell. It is found that between the bulk C15-NbCo2 Laves and Nb-Co µ-phases, the interplanar spacing and local stiffness of the Laves phase building block change, leading to a strong reduction in hardness and stiffness, as well as a transition from synchroshear to crystallographic slip. Furthermore, as the composition changes from Nb6 Co7 to Nb7 Co6 , the Co atoms in the triple layer are substituted such that the triple layer of the Laves phase building block becomes a slab of pure Nb, resulting in inhomogeneous changes in elasticity and a transition from crystallographic slip to a glide-and-shuffle mechanism. These findings open opportunities to purposefully tailor the plasticity of these topologically close-packed phases in the bulk by manipulating the interplanar spacing and local shear modulus of the fundamental crystal building blocks at the atomic scale.

2.
Nanoscale ; 14(48): 18192-18199, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36454106

RESUMO

Nanocrystalline Mg was sputter deposited onto an Ar ion etched Si {100} substrate. Despite an ∼6 nm amorphous layer found at the interface, the Mg thin film exhibits a sharp basal-plane texture enabled by surface energy minimization. The columnar grains have abundant 〈0001〉 tilt grain boundaries in between, most of which are symmetric with various misorientation angles. Up to ∼20° tilt angle, they are composed of arrays of equally-spaced edge dislocations. Ga atoms were introduced from focused ion beam milling and found to segregate at grain boundaries and preferentially decorate the dislocation cores. Most symmetric grain boundaries are type-1, whose boundary planes have smaller dihedral angles with {21̄1̄0} rather than {101̄0}. Atomistic simulations further demonstrate that type-2 grain boundaries, having boundary planes at smaller dihedral angles with {101̄0}, are composed of denser dislocation arrays and hence have higher formation energy than their type-1 counterparts. The finding correlates well with the dominance of type-1 grain boundaries observed in the Mg thin film.

3.
Int J Gen Med ; 15: 4339-4356, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35480995

RESUMO

Purpose: To establish prediction models for 6-month prognosis in femoral neck-fracture patients receiving total hip arthroplasty (THA). Patients and Methods: In total, 182 computed tomography image pairs from 85 patients were collected and divided into a training set (n=127) and testing set (n=55). Least absolute shrinkage-selection operator regression was used for selecting optimal predictors. A random-forest algorithm was used to establish the prediction models, which were evaluated for accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and area under the curve (AUC). Results: The best model in this study was constructed based on demographic data, preoperative laboratory indicators, and three preoperative radiomic features. In the random-forest model, activated partial thromboplastin time, a preoperative radiomic feature (maximum diameter), and fibrinogen were important variables correlating with patient outcomes. The AUC, sensitivity, specificity, PPV, NPV, and accuracy in the training set were 0.986 (95% CI 0.971-1), 0.925 (95% CI 0.862-0.988), 0.983 (95% CI 0.951-1.016), 0.984 (95% CI 0.953-1.014), 0.922 (95% CI 0.856-0.988), and 0.953 (95% CI 0.916-0.990), respectively. The AUC, sensitivity, specificity, PPV, NPV, and accuracy in the testing set were 0.949 (95% CI 0.885-1), 0.767 (95% CI 0.615-0.918), 1 (95% CI 1-1), 1 (95% CI 1-1), 0.781 (95% CI 0.638-0.924), and 0.873 (95% CI 0.785-0.961), respectively. Conclusion: The model based on demographic, preoperative clinical, and preoperative radiomic data showed the best predictive ability for 6-month prognosis in the femoral neck-fracture patients receiving THA.

4.
ACS Nano ; 15(1): 362-376, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33231422

RESUMO

Silver nanowire (AgNW) networks show excellent optical, electrical, and mechanical properties, which make them ideal candidates for transparent electrodes in flexible and stretchable devices. Various coating strategies and testing setups have been developed to further improve their stretchability and to evaluate their performance. Still, a comprehensive microscopic understanding of the relationship between mechanical and electrical failure is missing. In this work, the fundamental deformation modes of five-fold twinned AgNWs in anisotropic networks are studied by large-scale SEM straining tests that are directly correlated with corresponding changes in the resistance. A pronounced effect of the network anisotropy on the electrical performance is observed, which manifests itself in a one order of magnitude lower increase in resistance for networks strained perpendicular to the preferred wire orientation. Using a scale-bridging microscopy approach spanning from NW networks to single NWs to atomic-scale defects, we were able to identify three fundamental deformation modes of NWs, which together can explain this behavior: (i) correlated tensile fracture of NWs, (ii) kink formation due to compression of NWs in transverse direction, and (iii) NW bending caused by the interaction of NWs in the strained network. A key observation is the extreme deformability of AgNWs in compression. Considering HRTEM and MD simulations, this behavior can be attributed to specific defect processes in the five-fold twinned NW structure leading to the formation of NW kinks with grain boundaries combined with V-shaped surface reconstructions, both counteracting NW fracture. The detailed insights from this microscopic study can further improve fabrication and design strategies for transparent NW network electrodes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...