Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Funct Integr Genomics ; 15(1): 17-26, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25163431

RESUMO

The xylem sap of a plant is primarily responsible for transporting molecules from the underground root system to the aboveground parts of the plant body. In order to understand the role that roots play in cotton growth and development, the components present in xylem sap must be elucidated. In this study, we used a shotgun HPLC-ESI-MS/MS proteomics approach to identify 455 peptides from the xylem sap of field-grown cotton plants at peak blooming stage. Of these peptides, 384 (84.4%) were found to be secreted proteins and 320 (70.3%) had special molecular functions. Based on Gene Ontology (GO) analysis, 348 peptides were annotated in terms of molecular function, biological process, and cellular localization, with 46.9 and 45.1% being related to catalytic activity and binding activity, respectively. Many xylem sap-containing proteins were predicted to be involved in different phases of xylem differentiation including cell wall metabolism, secondary cell wall development and patterning, and programmed cell death. The identification of starch and sucrose hydrolyzing enzymes implicated the interaction between roots and aboveground parts on the aspect of carbohydrate metabolism. Many of the proteins identified in this study are involved in defense mechanisms including pathogen-related proteins, such as peroxidases, chitinases, and germin-like proteins, proteases involved in disease resistance, and phytoalexin phenylpropanoid synthesis-related proteins. The majority of identified signaling proteins were fasciclin-like arabinogalactan proteins and kinases. The results of this study provide useful insight into the communication mechanisms between cotton roots and the rest of the cotton plant.


Assuntos
Parede Celular/metabolismo , Meio Ambiente , Gossypium/metabolismo , Exsudatos de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Estresse Fisiológico , Xilema/metabolismo , Ontologia Genética , Ponto Isoelétrico , Anotação de Sequência Molecular , Peso Molecular , Peptídeos/metabolismo , Espectrometria de Massas por Ionização por Electrospray
2.
PLoS One ; 8(12): e82256, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24363813

RESUMO

Agricultural crops experience diverse mechanical stimuli, which may affect their growth and development. This study was conducted to investigate the effects of mechanical stresses caused by hanging labels from the flower petioles (HLFP) on plant shape and cotton yields in four cotton varieties: CCRI 41, DP 99B, CCRC 21, and BAI 1. HLFP significantly reduced plant height by between 7.8% and 36.5% in all four lines and also significantly reduced the number of fruiting positions per plant in the CCRI 41, DP 99B and CCRC 21 lines. However, the number of fruiting positions in BAI 1 was unaffected. HLFP also significantly reduced the boll weight for all four cultivars and the seed cotton yields for CCRI 41, DP 99B and BAI 1. Conversely, it significantly increased the seed cotton yield for CCRC 21 by 11.2%. HLFP treatment did not significantly affect the boll count in the fruiting branches of the 1(st) and 2(nd) layers in any variety, but did significantly reduce those on the 3(rd) and 4(th) fruiting branch layers for CCRI 41 and DP 99B. Similar trends were observed for the number of bolls per FP. In general, HLFP reduced plant height and boll weight. However, the lines responded differently to HLFP treatment in terms of their total numbers of fruiting positions, boll numbers, seed cotton yields, etc. Our results also suggested that HFLP responses might be delayed for some agronomy traits of some cotton genotypes, and that hanging labels from early-opening flowers might influence the properties related with those that opened later on.


Assuntos
Agricultura/métodos , Flores/fisiologia , Gossypium/crescimento & desenvolvimento , Estresse Mecânico , Análise de Variância , Plantas Geneticamente Modificadas , Especificidade da Espécie , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...