Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37808666

RESUMO

BACKGROUND: Developmental myelination is a protracted process in the mammalian brain. One theory for why oligodendrocytes mature so slowly posits that myelination may stabilize neuronal circuits and temper neuronal plasticity as animals age. We tested this hypothesis in the visual cortex, which has a well-defined critical period for experience-dependent neuronal plasticity. OBJECTIVES/METHODS: To prevent myelin progression, we conditionally deleted Myrf, a transcription factor necessary for oligodendrocyte maturation, from oligodendrocyte precursor cells (Myrf cKO) in adolescent mice. To induce experience-dependent plasticity, adult control and Myrf cKO mice were monocularly deprived by eyelid suture. Functional and structural neuronal plasticity in the visual cortex were assessed in vivo by intrinsic signal optical imaging and longitudinal two photon imaging of dendritic spines, respectively. RESULTS: During adolescence, visual experience modulated the rate of oligodendrocyte maturation in visual cortex. Myrf deletion from oligodendrocyte precursors during adolescence led to inhibition of oligodendrocyte maturation and myelination that persisted into adulthood. Following monocular deprivation, visual cortex activity in response to visual stimulation of the deprived eye remained stable in adult control mice, as expected for post-critical period animals. By contrast, visual cortex responses to the deprived eye decreased significantly following monocular deprivation in adult Myrf cKO mice, reminiscent of the plasticity observed in adolescent mice. Furthermore, visual cortex neurons in adult Myrf cKO mice had fewer dendritic spines and a higher level of spine turnover. Finally, monocular deprivation induced spatially coordinated spine size decreases in adult Myrf cKO, but not control, mice. CONCLUSIONS: These results demonstrate a critical role for oligodendrocytes in shaping the maturation and stabilization of cortical circuits and support the concept of myelin acting as a brake on neuronal plasticity during development.

2.
Nat Neurosci ; 25(10): 1251-1252, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36180789
3.
Brain ; 145(11): 3943-3952, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-35678509

RESUMO

Many biomarkers in clinical neuroscience lack pathological certification. This issue is potentially a significant contributor to the limited success of neuroprotective and neurorestorative therapies for human neurological disease-and is evident even in areas with therapeutic promise such as myelin repair. Despite the identification of promising remyelinating candidates, biologically validated methods to demonstrate therapeutic efficacy or provide robust preclinical evidence of remyelination in the CNS are lacking. Therapies with potential to remyelinate the CNS constitute one of the most promising and highly anticipated therapeutic developments in the pipeline to treat multiple sclerosis and other demyelinating diseases. The optic nerve has been proposed as an informative pathway to monitor remyelination in animals and human subjects. Recent clinical trials using visual evoked potential have had promising results, but without unequivocal evidence about the cellular and molecular basis for signal changes on visual evoked potential, the interpretation of these trials is constrained. The visual evoked potential was originally developed and used in the clinic as a diagnostic tool but its use as a quantitative method for assessing therapeutic response requires certification of its biological specificity. Here, using the tools of experimental pathology we demonstrate that quantitative measurements of myelination using both histopathological measures of nodal structure and ultrastructural assessments correspond to visual evoked potential latency in both inflammatory and chemical models of demyelination. Visual evoked potential latency improves after treatment with a tool remyelinating compound (clemastine), mirroring both quantitative and qualitative myelin assessment. Furthermore, clemastine does not improve visual evoked potential latency following demyelinating injury when administered to a transgenic animal incapable of forming new myelin. Therefore, using the capacity for therapeutic enhancement and biological loss of function we demonstrate conclusively that visual evoked potential measures myelin status and is thereby a validated tool for preclinical verification of remyelination.


Assuntos
Esclerose Múltipla , Remielinização , Humanos , Animais , Potenciais Evocados Visuais , Clemastina/uso terapêutico , Bainha de Mielina/metabolismo , Esclerose Múltipla/patologia , Biomarcadores/metabolismo
4.
Sci Rep ; 11(1): 19414, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34593829

RESUMO

In humans, loss-of-function mutations in the UBE3A gene lead to the neurodevelopmental disorder Angelman syndrome (AS). AS patients have severe impairments in speech, learning and memory, and motor coordination, for which there is currently no treatment. In addition, UBE3A is duplicated in > 1-2% of patients with autism spectrum disorders-a further indication of the significant role it plays in brain development. Altered expression of UBE3A, an E3 ubiquitin ligase, is hypothesized to lead to impaired levels of its target proteins, but identifying the contribution of individual UBE3A targets to UBE3A-dependent deficits remains of critical importance. Ephexin5 is a putative UBE3A substrate that has restricted expression early in development, regulates synapse formation during hippocampal development, and is abnormally elevated in AS mice, modeled by maternally-derived Ube3a gene deletion. Here, we report that Ephexin5 can be directly ubiquitylated by UBE3A. Furthermore, removing Ephexin5 from AS mice specifically rescued hippocampus-dependent behaviors, CA1 physiology, and deficits in dendritic spine number. Our findings identify Ephexin5 as a key driver of hippocampal dysfunction and related behavioral deficits in AS mouse models. These results demonstrate the exciting potential of targeting Ephexin5, and possibly other UBE3A substrates, to improve symptoms of AS and other UBE3A-related developmental disorders.


Assuntos
Síndrome de Angelman/metabolismo , Hipocampo , Aprendizagem , Ubiquitina-Proteína Ligases/fisiologia , Animais , Células Cultivadas , Feminino , Hipocampo/metabolismo , Hipocampo/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios
5.
Neuron ; 109(14): 2292-2307.e5, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34102111

RESUMO

Severe cognitive decline is a hallmark of Alzheimer's disease (AD). In addition to gray matter loss, significant white matter pathology has been identified in AD patients. Here, we characterized the dynamics of myelin generation and loss in the APP/PS1 mouse model of AD. Unexpectedly, we observed a dramatic increase in the rate of new myelin formation in APP/PS1 mice, reminiscent of the robust oligodendroglial response to demyelination. Despite this increase, overall levels of myelination are decreased in the cortex and hippocampus of APP/PS1 mice and postmortem AD tissue. Genetically or pharmacologically enhancing myelin renewal, by oligodendroglial deletion of the muscarinic M1 receptor or systemic administration of the pro-myelinating drug clemastine, improved the performance of APP/PS1 mice in memory-related tasks and increased hippocampal sharp wave ripples. Taken together, these results demonstrate the potential of enhancing myelination as a therapeutic strategy to alleviate AD-related cognitive impairment.


Assuntos
Doença de Alzheimer/patologia , Disfunção Cognitiva/patologia , Aprendizagem em Labirinto/fisiologia , Bainha de Mielina/patologia , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Disfunção Cognitiva/genética , Disfunção Cognitiva/metabolismo , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Bainha de Mielina/genética , Bainha de Mielina/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo
6.
Elife ; 102021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33689679

RESUMO

TDP-43 is extensively studied in neurons in physiological and pathological contexts. However, emerging evidence indicates that glial cells are also reliant on TDP-43 function. We demonstrate that deletion of TDP-43 in Schwann cells results in a dramatic delay in peripheral nerve conduction causing significant motor deficits in mice, which is directly attributed to the absence of paranodal axoglial junctions. By contrast, paranodes in the central nervous system are unaltered in oligodendrocytes lacking TDP-43. Mechanistically, TDP-43 binds directly to Neurofascin mRNA, encoding the cell adhesion molecule essential for paranode assembly and maintenance. Loss of TDP-43 triggers the retention of a previously unidentified cryptic exon, which targets Neurofascin mRNA for nonsense-mediated decay. Thus, TDP-43 is required for neurofascin expression, proper assembly and maintenance of paranodes, and rapid saltatory conduction. Our findings provide a framework and mechanism for how Schwann cell-autonomous dysfunction in nerve conduction is directly caused by TDP-43 loss-of-function.


Assuntos
Proteínas de Ligação a DNA/genética , Éxons , Junções Intercelulares/metabolismo , Condução Nervosa , Células de Schwann/metabolismo , Animais , Proteínas de Ligação a DNA/metabolismo , Feminino , Masculino , Camundongos
7.
Nat Rev Neurosci ; 21(12): 682-694, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33046886

RESUMO

Throughout our lifespan, new sensory experiences and learning continually shape our neuronal circuits to form new memories. Plasticity at the level of synapses has been recognized and studied for decades, but recent work has revealed an additional form of plasticity - affecting oligodendrocytes and the myelin sheaths they produce - that plays a crucial role in learning and memory. In this Review, we summarize recent work characterizing plasticity in the oligodendrocyte lineage following sensory experience and learning, the physiological and behavioural consequences of manipulating that plasticity, and the evidence for oligodendrocyte and myelin dysfunction in neurodevelopmental disorders with cognitive symptoms. We also discuss the limitations of existing approaches and the conceptual and technical advances that are needed to move forward this rapidly developing field.


Assuntos
Aprendizagem/fisiologia , Memória/fisiologia , Bainha de Mielina/fisiologia , Plasticidade Neuronal/fisiologia , Animais , Doenças Desmielinizantes/fisiopatologia , Humanos , Oligodendroglia/fisiologia , Sinapses
8.
Proc Natl Acad Sci U S A ; 117(15): 8611-8615, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32229573

RESUMO

Electrical or optogenetic stimulation of lateral hypothalamic (LH) GABA neurons induces rapid vigorous eating in sated animals. The dopamine system has been implicated in the regulation of feeding. Previous work has suggested that a subset of LH GABA neurons projects to the ventral tegmental area (VTA) and targets GABA neurons, inhibiting them and thereby disinhibiting dopaminergic activity and release. Furthermore, stimulation-induced eating is attenuated by dopamine lesions or receptor antagonists. Here we explored the involvement of dopamine in LH stimulation-induced eating. LH stimulation caused sated mice to pick up pellets of standard chow with latencies that varied based on stimulation intensity; once food was picked up, animals ate for the remainder of the 60-s stimulation period. However, lesion of VTA GABA neurons failed to disrupt this effect. Moreover, direct stimulation of VTA or substantia nigra dopamine cell bodies failed to induce food approach or eating. Looking further, we found that some LH GABA fibers pass through the VTA to more caudal sites, where they synapse onto neurons near the locus coeruleus (LC). Similar eating was induced by stimulation of LH GABA terminals or GABA cell bodies in this peri-LC region. Lesion of peri-LC GABA neurons blocked LH stimulation-induced eating, establishing them as a critical downstream circuit element for LH neurons. Surprisingly, lesions did not alter body weight, suggesting that this system is not involved in the hunger or satiety mechanisms that govern normal feeding. Thus, we present a characterization of brain circuitry that may promote overeating and contribute to obesity.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Ingestão de Alimentos/fisiologia , Comportamento Alimentar/fisiologia , Neurônios GABAérgicos/metabolismo , Região Hipotalâmica Lateral/fisiologia , Área Tegmentar Ventral/fisiologia , Animais , Comportamento Animal , Dopamina/metabolismo , Neurônios Dopaminérgicos/citologia , Feminino , Neurônios GABAérgicos/citologia , Região Hipotalâmica Lateral/citologia , Masculino , Camundongos , Vias Neurais , Receptores de GABA-A/metabolismo , Recompensa , Área Tegmentar Ventral/citologia , Ácido gama-Aminobutírico/metabolismo
9.
Immunity ; 52(1): 11-13, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31951547

RESUMO

Multiple sclerosis is a chronic inflammatory disease characterized by demyelination in the central nervous system. In this issue of Immunity, Werneberg et al. report a striking loss of synapses driven by excessive microglial pruning early in demyelinating disease, which can be rescued by inhibiting the complement component C3.


Assuntos
Doenças Desmielinizantes , Esclerose Múltipla , Sistema Nervoso Central , Humanos , Microglia , Sinapses
10.
Cell Rep ; 27(8): 2262-2271.e5, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31116973

RESUMO

Glutamate has been implicated in a wide range of brain pathologies and is thought to be metabolized via the astrocyte-specific enzyme glutamine synthetase (GS). We show here that oligodendrocytes, the myelinating glia of the central nervous system, also express high levels of GS in caudal regions like the midbrain and the spinal cord. Selective removal of oligodendrocyte GS in mice led to reduced brain glutamate and glutamine levels and impaired glutamatergic synaptic transmission without disrupting myelination. Furthermore, animals lacking oligodendrocyte GS displayed deficits in cocaine-induced locomotor sensitization, a behavior that is dependent on glutamatergic signaling in the midbrain. Thus, oligodendrocytes support glutamatergic transmission through the actions of GS and may represent a therapeutic target for pathological conditions related to brain glutamate dysregulation.


Assuntos
Encéfalo/fisiopatologia , Glutamato-Amônia Ligase/metabolismo , Glutamina/metabolismo , Oligodendroglia/metabolismo , Animais , Transdução de Sinais
11.
Neuropsychopharmacology ; 44(2): 344-355, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30054584

RESUMO

Astrocytes are ubiquitous CNS cells that support tissue homeostasis through ion buffering, neurotransmitter recycling, and regulation of CNS vasculature. Yet, despite the essential functional roles they fill, very little is known about the physiology of astrocytes in the ventral midbrain, a region that houses dopamine-releasing neurons and is critical for reward learning and motivated behaviors. Here, using a combination of whole-transcriptome sequencing, histology, slice electrophysiology, and calcium imaging, we performed the first functional and molecular profiling of ventral midbrain astrocytes and observed numerous differences between these cells and their telencephalic counterparts, both in their gene expression profile and in their physiological properties. Ventral midbrain astrocytes have very low membrane resistance and inward-rectifying potassium channel-mediated current, and are extensively coupled to surrounding oligodendrocytes through gap junctions. They exhibit calcium responses to glutamate but are relatively insensitive to norepinephrine. In addition, their calcium activity can be dynamically modulated by dopamine D2 receptor signaling. Taken together, these data indicate that ventral midbrain astrocytes are physiologically distinct from astrocytes in cortex and hippocampus. This work provides new insights into the extent of functional astrocyte heterogeneity within the adult brain and establishes the foundation for examining the impact of regional astrocyte differences on dopamine neuron function and susceptibility to degeneration.


Assuntos
Astrócitos/fisiologia , Córtex Cerebral/metabolismo , Mesencéfalo/metabolismo , Receptores de Dopamina D2/metabolismo , Animais , Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Cálcio/metabolismo , Forma Celular/fisiologia , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Feminino , Junções Comunicantes/metabolismo , Ácido Glutâmico/farmacologia , Masculino , Mesencéfalo/citologia , Mesencéfalo/efeitos dos fármacos , Camundongos , Norepinefrina/farmacologia
12.
Front Cell Neurosci ; 12: 141, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29896091

RESUMO

In recent years, the role of astrocytes in shaping neuronal signaling has come to the forefront of neuroscience research. The development of genetic tools that enable targeted manipulation of astrocytes has revealed a wealth of mechanisms by which they can alter the synaptic strength and intrinsic excitability of neurons in behaviorally relevant ways. In parallel, several studies have demonstrated significant variability in the gene expression and physiology of astrocytes within and between brain regions. Thus, to form an accurate understanding of how astrocytes contribute to neuronal transmission, we must take into consideration the diversity that exists in their intrinsic properties. In this review, we will summarize recent findings on astrocyte heterogeneity and discuss the implications for their interactions with neurons and their effects on neuronal transmission.

13.
Eur J Neurosci ; 44(12): 2975-2983, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27711998

RESUMO

Dopamine neurons in the ventral tegmental area (VTA) are involved in a variety of physiological and pathological conditions, ranging from motivated behaviours to substance use disorders. While many studies have shown that these neurons can express plasticity at excitatory and inhibitory synapses, little is known about how inhibitory inputs and glial activity shape the output of DA neurons and therefore, merit greater discussion. In this review, we will attempt to fill in a bit more of the puzzle, with a focus on inhibitory transmission and astrocyte function. We summarize the findings within the VTA as well as observations made in other brain regions that have important implications for plasticity in general and should be considered in the context of DA neuron plasticity.


Assuntos
Neurônios Dopaminérgicos/fisiologia , Plasticidade Neuronal , Área Tegmentar Ventral/fisiologia , Animais , Astrócitos/fisiologia , Neurônios GABAérgicos/fisiologia , Humanos , Receptores de GABA-A/fisiologia , Receptores de GABA-B/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...