Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
1.
Adv Sci (Weinh) ; : e2401855, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38973158

RESUMO

Clinically, chronic pain and depression often coexist in multiple diseases and reciprocally reinforce each other, which greatly escalates the difficulty of treatment. The neural circuit mechanism underlying the chronic pain/depression comorbidity remains unclear. The present study reports that two distinct subregions in the paraventricular thalamus (PVT) play different roles in this pathological process. In the first subregion PVT posterior (PVP), glutamatergic neurons (PVPGlu) send signals to GABAergic neurons (VLPAGGABA) in the ventrolateral periaqueductal gray (VLPAG), which mediates painful behavior in comorbidity. Meanwhile, in another subregion PVT anterior (PVA), glutamatergic neurons (PVAGlu) send signals to the nucleus accumbens D1-positive neurons and D2-positive neurons (NAcD1→D2), which is involved in depression-like behavior in comorbidity. This study demonstrates that the distinct thalamo-subcortical circuits PVPGlu→VLPAGGABA and PVAGlu→NAcD1→D2 mediated painful behavior and depression-like behavior following spared nerve injury (SNI), respectively, which provides the circuit-based potential targets for preventing and treating comorbidity.

2.
BMC Med Educ ; 24(1): 408, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609894

RESUMO

OBJECTIVE: As an experimental biological science, physiology has been taught as an integral component of medical curricula for a long time in China. The teaching effectiveness of physiology courses will directly affect students' learning of other medical disciplines. The purpose of this study is to investigate the current situation and changes in physiology teaching over 30 years in Chinese medical schools. METHODS: National survey was conducted online on the platform SoJump via WeChat and the web. The head of the physiology department in medical school was asked to indicate the information of physiology education from three periods: 1991-2000, 2001-2010, and 2011-2020. The responses of 80 leaders of the Department of Physiology from mainland Chinese medical schools were included in the study for analysis. RESULTS: The survey showed that the class hours, both of theory and practice, had been decreased. During the past 20 years, the total number of physiology teachers, the number of physiology teachers who had been educated in medical schools, and the number of technicians had been reduced, whereas teachers with doctor's degrees had been increased. In addition to traditional didactic teaching, new teaching approaches, including problem-based learning/case-based learning/team-based learning, integrated curriculum and formative evaluation systems, had been employed, mostly for more than 5 years, in some medical schools. CONCLUSION: The present study has provided historical data regarding the current status of physiology education in China and that in the past thirty years by showing that physiology education in China has developed quickly,even it faces many challenges.


Assuntos
Currículo , Pessoal de Educação , Humanos , Escolaridade , Estudantes , China
3.
Brain Behav Immun ; 119: 84-95, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38552922

RESUMO

Autism spectrum disorder (ASD) is a neurodevelopmental disorder that severely affects individuals' daily life and social development. Unfortunately, there are currently no effective treatments for ASD. Dexmedetomidine (DEX) is a selective agonist of α2 adrenergic receptor (α2AR) and is widely used as a first-line medication for sedation and hypnosis in clinical practice. In recent years, there have been reports suggesting its potential positive effects on improving emotional and cognitive functions. However, whether dexmedetomidine has therapeutic effects on the core symptoms of ASD, namely social deficits and repetitive behaviors, remains to be investigated. In the present study, we employed various behavioral tests to assess the phenotypes of animals, including the three-chamber, self-grooming, marble burying, open field, and elevated plus maze. Additionally, electrophysiological recordings, western blotting, qPCR were mainly used to investigate and validate the potential mechanisms underlying the role of dexmedetomidine. We found that intraperitoneal injection of dexmedetomidine in ASD model mice-BTBR T+ Itpr3tf/J (BTBR) mice could adaptively improve their social deficits. Further, we observed a significant reduction in c-Fos positive signals and interleukin-6 (IL-6) expression level in the prelimbic cortex (PrL) of the BTBR mice treated with dexmedetomidine. Enhancing or inhibiting the action of IL-6 directly affects the social behavior of BTBR mice. Mechanistically, we have found that NF-κB p65 is a key pathway regulating IL-6 expression in the PrL region. In addition, we have confirmed that the α2AR acts as a receptor switch mediating the beneficial effects of dexmedetomidine in improving social deficits. This study provides the first evidence of the beneficial effects of dexmedetomidine on core symptoms of ASD and offers a theoretical basis and potential therapeutic approach for the clinical treatment of ASD.


Assuntos
Agonistas de Receptores Adrenérgicos alfa 2 , Transtorno do Espectro Autista , Dexmedetomidina , Modelos Animais de Doenças , Interleucina-6 , NF-kappa B , Receptores Adrenérgicos alfa 2 , Comportamento Social , Animais , Dexmedetomidina/farmacologia , Camundongos , Transtorno do Espectro Autista/tratamento farmacológico , Transtorno do Espectro Autista/metabolismo , Masculino , Receptores Adrenérgicos alfa 2/metabolismo , Receptores Adrenérgicos alfa 2/efeitos dos fármacos , Agonistas de Receptores Adrenérgicos alfa 2/farmacologia , NF-kappa B/metabolismo , Interleucina-6/metabolismo , Transdução de Sinais/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Comportamento Animal/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Inflamação/metabolismo , Inflamação/tratamento farmacológico
4.
eNeuro ; 11(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38346901

RESUMO

Human and animal imaging studies demonstrated that chronic pain profoundly alters the structure and the functionality of several brain regions and even causes mental dysfunctions such as depression and anxiety disorders. In this article, we conducted a multimodal study cross-sectionally and longitudinally, to evaluate how neuropathic pain affects the brain. Using the spared nerve injury (SNI) model which promotes long-lasting mechanical allodynia, results showed that neuropathic pain deeply modified the intrinsic organization of the brain functional network 2 weeks after injury. There are significant changes in the activity of the left thalamus (Th_L) and left olfactory bulb (OB_L) brain regions after SNI, as evidenced by both the blood oxygen level-dependent (BOLD) signal and c-Fos expression. Importantly, these changes were closely related to mechanical pain behavior of rats. However, it is worth noting that after morphine administration for analgesia, only the increased activity in the TH region is reversed, while the decreased activity in the OB region becomes more prominent. Functional connectivity (FC) and c-Fos correlation analysis further showed these two regions of interest (ROIs) exhibit different FC patterns with other brain regions. Our study comprehensively revealed the adaptive changes of brain neural networks induced by nerve injury in both cross-sectional and longitudinal dimensions and emphasized the abnormal activity and FC of Th_L and OB_L in the pathological condition. It provides reliable assistance in exploring the intricate mechanisms of diseases.


Assuntos
Neuralgia , Humanos , Ratos , Animais , Ratos Sprague-Dawley , Estudos Transversais , Encéfalo/metabolismo , Hiperalgesia , Modelos Animais de Doenças
5.
Adv Sci (Weinh) ; 10(35): e2303113, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37877615

RESUMO

N4-Acetylcytidine (ac4C), a highly conserved post-transcriptional machinery with extensive existence for RNA modification, plays versatile roles in various cellular processes and functions. However, the molecular mechanism by which ac4C modification mediates neuropathic pain remains elusive. Here, it is found that the enhanced ac4C modification promotes the recruitment of polysome in Vegfa mRNA and strengthens the translation efficiency following SNI. Nerve injury increases the expression of NAT10 and the interaction between NAT10 and Vegfa mRNA in the dorsal horn neurons, and the gain and loss of NAT10 function further confirm that NAT10 is involved in the ac4C modification in Vegfa mRNA and pain behavior. Moreover, the ac4C-mediated VEGFA upregulation contributes to the central sensitivity and neuropathic pain induced by SNI or AAV-hSyn-NAT10. Finally, SNI promotes the binding of HNRNPK in Vegfa mRNA and subsequently recruits the NAT10. The enhanced interaction between HNRNPK and NAT10 contributes to the ac4C modification of Vegfa mRNA and neuropathic pain. These findings suggest that the enhanced interaction between HNRNPK and Vegfa mRNA upregulates the ac4C level by recruiting NAT10 and contributes to the central sensitivity and neuropathic pain following SNI. Blocking this cascade may be a novel therapeutic approach in patients with neuropathic pain.


Assuntos
Sensibilização do Sistema Nervoso Central , Neuralgia , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Neuralgia/genética , Neuralgia/metabolismo , Corno Dorsal da Medula Espinal/metabolismo , Regulação para Cima/genética
6.
Neurochem Res ; 48(12): 3652-3664, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37592110

RESUMO

Evidence demonstrates that DNA methylation is associated with the occurrence and development of various neurological diseases. However, the potential target genes undergoing DNA methylation, as well as their involvement in the chemotherapy drug oxaliplatin-induced neuropathic pain, are still unclear. Here, Lrfn4, which showed hypermethylation in the promoter regions, was screened from the SRA methylation database (PRJNA587622) following oxaliplatin treatment. MeDIP and qPCR assays identified that oxaliplatin treatment increased the methylation in Lrfn4 promoter region and decreased the expression of LRFN4 in the spinal dorsal horn. The assays with gain and loss of LRFN4 function demonstrated that LRFN4 downregulation in spinal dorsal horn contributed to the oxaliplatin-induced mechanical allodynia and cold hyperalgesia. Moreover, oxaliplatin treatment increased the DNA methyltransferases DNMT3a expression and the interaction between DNMT3a and Lrfn4 promoter, while inhibition of DNMT3a prevented the downregulation of LRFN4a induced by oxaliplatin. We also observed that the transcriptional factor POU2F1 can bind to the predicted sites in DNMT3a promoter region, oxaliplatin treatment upregulated the expression of transcriptional factor POU2F1 in dorsal horn neurons. Intrathecal injection of POU2F1 siRNA prevented the DNMT3a upregulation and the LRFN4 downregulation induced by oxaliplatin. Additionally, intrathecal injection of DNMT3a siRNA or POU2F1 siRNA alleviated the mechanical allodynia induced by oxaliplatin. These findings suggested that transcription factor POU2F1 upregulated the expression of DNMT3a, which subsequently decreased LRFN4 expression through hypermethylation modification in spinal dorsal horn, thereby mediating neuropathic pain following oxaliplatin treatment.


Assuntos
Metilação de DNA , Neuralgia , Regulação para Baixo , Hiperalgesia/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neuralgia/induzido quimicamente , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Fator 1 de Transcrição de Octâmero/metabolismo , Oxaliplatina/efeitos adversos , RNA Interferente Pequeno/uso terapêutico , Corno Dorsal da Medula Espinal/metabolismo , Animais , Ratos
7.
Cells ; 12(14)2023 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-37508580

RESUMO

Breast cancer treatment can be improved with biomarkers for early detection and individualized therapy. A set of 86 microRNAs (miRNAs) were identified to separate breast cancer tumors from normal breast tissues (n = 52) with an overall accuracy of 90.4%. Six miRNAs had concordant expression in both tumors and breast cancer patient blood samples compared with the normal control samples. Twelve miRNAs showed concordant expression in tumors vs. normal breast tissues and patient survival (n = 1093), with seven as potential tumor suppressors and five as potential oncomiRs. From experimentally validated target genes of these 86 miRNAs, pan-sensitive and pan-resistant genes with concordant mRNA and protein expression associated with in-vitro drug response to 19 NCCN-recommended breast cancer drugs were selected. Combined with in-vitro proliferation assays using CRISPR-Cas9/RNAi and patient survival analysis, MEK inhibitors PD19830 and BRD-K12244279, pilocarpine, and tremorine were discovered as potential new drug options for treating breast cancer. Multi-omics biomarkers of response to the discovered drugs were identified using human breast cancer cell lines. This study presented an artificial intelligence pipeline of miRNA-based discovery of biomarkers, therapeutic targets, and repositioning drugs that can be applied to many cancer types.


Assuntos
Neoplasias da Mama , Neoplasias Mamárias Animais , MicroRNAs , Humanos , Animais , Feminino , MicroRNAs/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Reposicionamento de Medicamentos , Inteligência Artificial , Biomarcadores , Neoplasias Mamárias Animais/tratamento farmacológico
8.
Sci Adv ; 9(25): eadg5849, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37352353

RESUMO

The association between rewarding and drug-related memory is a leading factor for the formation of addiction, yet the neural circuits underlying the association remain unclear. Here, we showed that the interstitial nucleus of the posterior limb of the anterior commissure (IPAC) integrated rewarding and environmental memory information by two different receiving projections from ventral tegmental area (VTA) and nucleus accumbens shell region (NAcSh) to mediate the acquisition of morphine conditioned place preference (CPP). A projection from the VTA GABAergic neurons (VTAGABA) to the IPAC lateral region GABAergic neurons (IPACLGABA) mediated the effect of morphine rewarding, whereas the pathway from NAcSh dopamine receptor 1-expressing neurons (NAcShD1) to the IPAC medial region GABAergic neurons (IPACMGABA) was involved in the acquisition of environmental memory. These findings demonstrated that the distinct IPAC circuits VTAGABA→IPACLGABA and NAcShD1R→IPACMGABA were attributable to the rewarding and environmental memory during the acquisition of morphine CPP, respectively, and provided the circuit-based potential targets for preventing and treating opioid addiction.


Assuntos
Morfina , Área Tegmentar Ventral , Morfina/farmacologia , Recompensa , Neurônios GABAérgicos/metabolismo , Ácido gama-Aminobutírico/metabolismo
9.
Neurochem Res ; 48(8): 2350-2359, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36947308

RESUMO

Sympathetic axonal sprouting into dorsal root ganglia is a major phenomenon implicated in neuropathic pain, and sympathetic ganglia blockage may relieve some intractable chronic pain in animal pain models and clinical conditions. These suggest that sympathetic ganglia participated in the maintenance of chronic pain. However, the molecular mechanism underlying sympathetic ganglia-mediated chronic pain is not clear. Here, we found that spared nerve injury treatment upregulated the expression of ADAMTS4 and AP-2α protein and mRNA in the noradrenergic neurons of sympathetic ganglia during neuropathic pain maintenance. Knockdown the ADAMTS4 or AP-2α by injecting specific retro scAAV-TH (Tyrosine Hydroxylase)-shRNA ameliorated the mechanical allodynia induced by spared nerve injury on day 21 and 28. Furthermore, chromatin immunoprecipitation and coimmunoprecipitation assays found that spared nerve injury increased the recruitment of AP-2α to the ADAMTS4 gene promoter, the interaction between AP-2α and histone acetyltransferase p300 and the histone H4 acetylation on day 28. Finally, knockdown the AP-2α reduced the acetylation of H4 on the promoter region of ADAMTS4 gene and suppressed the increase of ADAMTS4 expression induced by spared nerve injury. Together, these results suggested that the enhanced interaction between AP-2α and p300 mediated the epigenetic upregulation of ADAMTS4 in sympathetic ganglia noradrenergic neurons, which contributed to the maintenance of spared nerve injury induced neuropathic pain.


Assuntos
Dor Crônica , Neuralgia , Traumatismos do Sistema Nervoso , Ratos , Animais , Regulação para Cima , Dor Crônica/metabolismo , Ratos Sprague-Dawley , Neuralgia/genética , Neuralgia/metabolismo , Gânglios Simpáticos , Gânglios Espinais/metabolismo , Traumatismos do Sistema Nervoso/metabolismo , Epigênese Genética
10.
Mol Pain ; 19: 17448069231158289, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36733258

RESUMO

Neuropathic pain is a common dose-limiting side effect of oxaliplatin, which hampers the effective treatment of tumors. Here, we found that upregulation of transcription factor NFATc2 decreased the expression of Beclin-1, a critical molecule in autophagy, in the spinal dorsal horn, and contributed to neuropathic pain following oxaliplatin treatment. Meanwhile, manipulating autophagy levels by intrathecal injection of rapamycin (RAPA) or 3-methyladenine (3-MA) differentially altered mechanical allodynia in oxaliplatin-treated or naïve rats. Utilizing chromatin immunoprecipitation-sequencing (ChIP-seq) assay combined with bioinformatics analysis, we found that NFATc2 negatively regulated the transcription of tuberous sclerosis complex protein 2 (TSC2), which contributed to the oxaliplatin-induced Beclin-1 downregulation. Further assays revealed that NFATc2 regulated histone H4 acetylation and methylation in the TSC2 promoter site 1 in rats' dorsal horns with oxaliplatin treatment. These results suggested that NFATc2 mediated the epigenetic downregulation of the TSC2/Beclin-1 autophagy pathway and contributed to oxaliplatin-induced mechanical allodynia, which provided a new therapeutic insight for chemotherapy-induced neuropathic pain.


Assuntos
Neuralgia , Esclerose Tuberosa , Animais , Ratos , Proteína Beclina-1/genética , Proteína Beclina-1/metabolismo , Proteína Beclina-1/farmacologia , Modelos Animais de Doenças , Regulação para Baixo/genética , Epigênese Genética , Hiperalgesia/induzido quimicamente , Hiperalgesia/genética , Hiperalgesia/tratamento farmacológico , Neuralgia/induzido quimicamente , Neuralgia/genética , Neuralgia/tratamento farmacológico , Oxaliplatina , Ratos Sprague-Dawley , Corno Dorsal da Medula Espinal/metabolismo , Fatores de Transcrição/metabolismo , Esclerose Tuberosa/metabolismo
11.
Neurosci Bull ; 39(6): 947-961, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36637791

RESUMO

Effective treatments for neuropathic pain are lacking due to our limited understanding of the mechanisms. The circRNAs are mainly enriched in the central nervous system. However, their function in various physiological and pathological conditions have yet to be determined. Here, we identified circFhit, an exon-intron circRNA expressed in GABAergic neurons, which reduced the inhibitory synaptic transmission in the spinal dorsal horn to mediate spared nerve injury-induced neuropathic pain. Moreover, we found that circFhit decreased the expression of GAD65 and induced hyperexcitation in NK1R+ neurons by promoting the expression of its parental gene Fhit in cis. Mechanistically, circFhit was directly bound to the intronic region of Fhit, and formed a circFhit/HNRNPK complex to promote Pol II phosphorylation and H2B monoubiquitination by recruiting CDK9 and RNF40 to the Fhit intron. In summary, we revealed that the exon-intron circFhit contributes to GABAergic neuron-mediated NK1R+ neuronal hyperexcitation and neuropathic pain via regulating Fhit in cis.


Assuntos
Neuralgia , Células do Corno Posterior , Ratos , Animais , Células do Corno Posterior/metabolismo , Células do Corno Posterior/patologia , Corno Dorsal da Medula Espinal/metabolismo , Transmissão Sináptica
12.
J Pain ; 24(6): 1020-1029, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36641028

RESUMO

Projections from the periaqueductal gray (PAG) to the rostral ventromedial medulla (RVM) are known to engage in descending pain modulation, but how the neural substrates of the PAG-RVM projections contribute to neuropathic pain remains largely unknown. In this study, we showed somatostatin-expressing glutamatergic neurons in the lateral/ventrolateral PAG that facilitate mechanical and thermal hypersensitivity in a mouse model of chemotherapy-induced neuropathic pain. We found that these neurons form direct excitatory connections with neurons in the RVM region. Inhibition of this PAG-RVM projection alleviates mechanical and thermal hypersensitivity associated with neuropathy, whereas its activation enhances hypersensitivity in the mice. Thus, our findings revealed that somatostatin neurons within the PAG-RVM axial are crucial for descending pain facilitation and can potentially be exploited as a useful therapeutic target for neuropathic pain. PERSPECTIVE: We report the profound contribution of somatostatin neurons within the PAG-RVM projections to descending pain facilitation underlying neuropathic pain. These results may help to develop central therapeutic strategies for neuropathic pain.


Assuntos
Neuralgia , Substância Cinzenta Periaquedutal , Animais , Masculino , Camundongos , Bulbo/fisiologia , Neurônios/fisiologia , Somatostatina
13.
Neurochem Res ; 48(1): 229-237, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36064821

RESUMO

Evidence shows that miRNAs are deeply involved in nervous system diseases, but whether miRNAs contribute to the bortezomib (BTZ)-induced neuropathic pain remains unclear. We aimed to investigate whether miRNAs contribute to bortezomib (BTZ)-induced neuropathic pain and explore the related downstream cascades. The level of miRNAs in the spinal dorsal horn was explored using miRNA microarray and PCR. MiR-672-5p was significantly downregulated in dorsal horn neurons in the rats with BTZ treatment. Intrathecal injection of miR-672-5p agomir blunted the increase of the amplitude and frequency of sEPSCs in dorsal horn neurons and mechanical allodynia induced by BTZ. In addition, the knockdown of miR-672-5p by intrathecal injection of antagomir increased the amplitude and frequency of sEPSCs in dorsal horn neurons and decreased the mechanical withdrawal threshold in naïve rats. Furthermore, silico analysis and the data from subsequent assays indicated that REEP6, a potential miR-672-5p-regulating molecule, was increased in the spinal dorsal horn of rats with BTZ-induced neuropathic pain. Blocking REEP6 alleviated the mechanical pain behavior induced by BTZ, whereas overexpressing REEP6 induced pain hypersensitivity in naïve rats. Importantly, we further found that miR-672-5p was expressed in the REEP6-positive cells, and overexpression or knockdown of miR-672-5p reversely regulated the REEP6 expression. Bioinformatics analysis and double-luciferase reporter assay showed the existence of interaction sites between REEP6 mRNA and miR-672-5p. Overall, our study demonstrated that miR-672-5p directly regulated the expression of REEP6, which participated in the neuronal hyperexcitability in the spinal dorsal horn and neuropathic pain following BTZ treatment. This signaling pathway may potentially serve as a novel therapeutic avenue for chemotherapeutic-induced mechanical hypersensitivity.


Assuntos
MicroRNAs , Neuralgia , Ratos , Animais , Bortezomib , Regulação para Cima , Ratos Sprague-Dawley , Neuralgia/tratamento farmacológico , Corno Dorsal da Medula Espinal/metabolismo , Hiperalgesia/induzido quimicamente , Hiperalgesia/metabolismo , MicroRNAs/metabolismo
14.
J Neuroinflammation ; 19(1): 144, 2022 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-35690777

RESUMO

BACKGROUND: The adaption of brain region is fundamental to the development and maintenance of nervous system disorders. The prelimbic cortex (PrL) participates in the affective components of the pain sensation. However, whether and how the adaptation of PrL contributes to the comorbidity of neuropathic pain and depression are unknown. METHODS: Using resting-state functional magnetic resonance imaging (rs-fMRI), genetic knockdown or overexpression, we systematically investigated the activity of PrL region in the pathogenesis of neuropathic pain/depression comorbid using the combined approaches of immunohistochemistry, electrophysiology, and behavior. RESULTS: The activity of PrL and the excitability of pyramidal neurons were decreased, and the osteoclastic tartrate-resistant acid phosphatase 5 (Acp5) expression in PrL neurons was upregulated following the acquisition of spared nerve injury (SNI)-induced comorbidity. Genetic knockdown of Acp5 in pyramidal neurons, but not parvalbumin (PV) neurons or somatostatin (SST) neurons, attenuated the decrease of spike number, depression-like behavior and mechanical allodynia in comorbidity rats. Overexpression of Acp5 in PrL pyramidal neurons decreased the spike number and induced the comorbid-like behavior in naïve rats. Moreover, the expression of interleukin-6 (IL-6), phosphorylated STAT3 (p-STAT3) and acetylated histone H3 (Ac-H3) were significantly increased following the acquisition of comorbidity in rats. Increased binding of STAT3 to the Acp5 gene promoter and the interaction between STAT3 and p300 enhanced acetylation of histone H3 and facilitated the transcription of Acp5 in PrL in the modeled rodents. Inhibition of IL-6/STAT3 pathway prevented the Acp5 upregulation and attenuated the comorbid-like behaviors in rats. CONCLUSIONS: These data suggest that the adaptation of PrL mediated by IL-6/STAT3/Acp5 pathway contributed to the comorbidity of neuropathic pain/depression induced by SNI.


Assuntos
Interleucina-6 , Neuralgia , Fosfatase Ácida/metabolismo , Animais , Comorbidade , Depressão/metabolismo , Histonas , Interleucina-6/metabolismo , Neuralgia/metabolismo , Ratos , Fator de Transcrição STAT3/metabolismo , Fosfatase Ácida Resistente a Tartarato/metabolismo
15.
CNS Neurosci Ther ; 28(8): 1259-1267, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35633059

RESUMO

AIMS: Potassium (K+ ) channels have been demonstrated to play a prominent involvement in nociceptive processing. Kir7.1, the newest members of the Kir channel family, has not been extensively studied in the CNS, and its function remains largely unknown. The present study investigated the role of spinal Kir7.1 in the development of pathological pain. METHODS AND RESULTS: Neuropathic pain was induced by spared nerve injury (SNI). The mechanical sensitivity was assessed by von Frey test. Immunofluorescence staining assay revealed that Kir7.1 was predominantly expressed in spinal neurons but not astrocytes or microglia in normal rats. Western blot results showed that SNI markedly decreased the total and membrane expression of Kir7.1 in the spinal dorsal horn accompanied by mechanical hypersensitivity. Blocking Kir7.1 with the specific antagonist ML418 or knockdown kir7.1 by siRNA led to mechanical allodynia. Co-IP results showed that the spinal kir7.1 channels were decorated by SUMO-1 but not SUMO-2/3, and Kir7.1 SUMOylation was upregulated following SNI. Moreover, inhibited SUMOylation by GA (E1 inhibitor) or 2-D08 (UBC9 inhibitor) can increase the spinal surface Kir7.1 expression. CONCLUSION: SUMOylation of the Kir7.1 in the spinal cord might contribute to the development of SNI-induced mechanical allodynia by decreasing the Kir7.1 surface expression in rats.


Assuntos
Hiperalgesia , Neuralgia , Animais , Hiperalgesia/metabolismo , Neuralgia/metabolismo , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Medula Espinal/patologia , Corno Dorsal da Medula Espinal/metabolismo , Sumoilação
16.
Neurochem Res ; 47(7): 1878-1887, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35278160

RESUMO

Chemotherapy-induced neuropathic pain is a major clinical problem with limited treatment options. Here, we show that metformin relieves bortezomib (BTZ)-evoked induction and maintenance of neuropathic pain by preventing the reduction in the expression of Beclin-1, an autophagy marker, in the spinal dorsal horn. Application of rapamycin or 3-methyladenine, autophagy inducer and inhibitor, respectively, affected the mechanical allodynia differently. Co-application of 3-methyladenine and metformin partially inhibited the effect of metformin in recovering Beclin-1 expression and in reducing the pain behavior in rats subjected to BTZ treatment. BTZ treatment also reduced the expression of AMPKa2 in the dorsal horn, which was recovered by metformin treatment. Overexpression of AMPKa2 attenuated the BTZ-evoked reduction in Beclin-1 expression and mechanical allodynia, whereas intrathecal injection of AMPKa2 siRNA decreased the Beclin-1 expression and induced mechanical allodynia in naive rats. Moreover, BTZ treatment increased the GATA3 expression in the dorsal horn, and GATA3 siRNA attenuated the AMPKa2 downregulation and mechanical allodynia induced by BTZ. Chromatin immunoprecipitation further showed that BTZ induced an increased recruitment of GATA3 to multiple sites in the AMPKa2 promoter region. Furthermore, decreased acetylation and increased methylation of histone H3 in the AMPKa2 promoter in the spinal dorsal horn was detected after BTZ treatment. Our findings suggest that metformin may regulate AMPKa2-mediated autophagy in the dorsal horn and alleviate the behavioral hypersensitivity induced by BTZ.


Assuntos
Metformina , Neuralgia , Animais , Autofagia , Proteína Beclina-1/metabolismo , Bortezomib/uso terapêutico , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Metformina/farmacologia , Metformina/uso terapêutico , Neuralgia/induzido quimicamente , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , RNA Interferente Pequeno/farmacologia , Ratos , Corno Dorsal da Medula Espinal/metabolismo
17.
Aging Cell ; 21(4): e13587, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35315217

RESUMO

Acrolein, an unsaturated aldehyde, is increased in the brain of Alzheimer's disease (AD) patients and identified as a potential inducer of sporadic AD. Synaptic dysfunction, as a typical pathological change occurring in the early stage of AD, is most closely associated with the severity of dementia. However, there remains a lack of clarity on the mechanisms of acrolein inducing AD-like pathology and synaptic impairment. In this study, acrolein-treated primary cultured neurons and mice were applied to investigate the effects of acrolein on cognitive impairment and synaptic dysfunction and their signaling mechanisms. In vitro, ROCK inhibitors, Fasudil, and Y27632, could attenuate the axon ruptures and synaptic impairment caused by acrolein. Meanwhile, RNA-seq distinct differentially expressed genes in acrolein models and initially linked activated RhoA/Rho-kinase2 (ROCK2) to acrolein-induced synaptic dysfunction, which could regulate neuronal cytoskeleton and neurite. The Morris water maze test and in vivo field excitatory postsynaptic potential (fEPSP) were performed to evaluate spatial memory and long-term potential (LTP), respectively. Acrolein induced cognitive impairment and attenuated LTP. Furthermore, the protein level of Synapsin 1 and postsynaptic density 95 (PSD95) and dendritic spines density were also decreased in acrolein-exposed mice. These changes were improved by ROCK2 inhibitor Fasudil or in ROCK2+/- mice. Together, our findings suggest that RhoA/ROCK2 signaling pathway plays a critical role in acrolein-induced synaptic damage and cognitive dysfunction, suggesting inhibition of ROCK2 should benefit to the early AD.


Assuntos
Acroleína , Doença de Alzheimer , Acroleína/efeitos adversos , Acroleína/metabolismo , Aldeídos/metabolismo , Doença de Alzheimer/patologia , Animais , Modelos Animais de Doenças , Hipocampo/metabolismo , Humanos , Camundongos , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
18.
Curr Neuropharmacol ; 20(6): 1011-1021, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34561983

RESUMO

Chronic pain is a common distressing neurological disorder and about 30% of the global population suffers from it. In addition to being highly prevalent, chronic pain causes a heavy economic and social burden. Although substantial progress has been achieved to dissect the underlying mechanism of chronic pain in the past few decades, the incidence and treatment of this neurological illness is yet not properly managed in clinical practice. While nerve injury-, chemotherapy- or inflammation-induced functional regulation of gene expression in the dorsal root ganglion and spinal cord are extensively reported to be involved in the pathogenic process of chronic pain, the specific mechanism of these altered transcriptional profile still remains unclear. Recent studies have shown that epigenetic mechanisms, including DNA/RNA methylation, histone modification and circular RNAs regulation, are involved in the occurrence and development of chronic pain. In this review, we provide a description of research on the role of epigenetic mechanism in chronic pain, summarize the latest clinical and preclinical advance in this field, and propose the potential directions for further research to elucidate the molecular mechanism underlying the pathogenesis of chronic pain.


Assuntos
Dor Crônica , Animais , Dor Crônica/genética , Dor Crônica/metabolismo , Metilação de DNA , Epigênese Genética , Gânglios Espinais/metabolismo , Humanos , Roedores
19.
Pharmacol Res ; 175: 106003, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34838693

RESUMO

Alzheimer's disease (AD) is a common neurodegenerative disease that mainly affects elderly people. However, the translational research of AD is frustrating, suggesting that the development of new AD animal models is crucial. By gavage administration of acrolein, we constructed a simple sporadic AD animal model which showed classic pathologies of AD in 1 month. The AD-like phenotypes and pathological changes were as followed. 1) olfactory dysfunctions, cognitive impairments and psychological symptoms in C57BL/6 mice; 2) increased levels of Aß1-42 and Tau phosphorylation (S396/T231) in cortex and hippocampus; 3) astrocytes and microglia proliferation; 4) reduced levels of postsynaptic density 95(PSD95) and Synapsin1, as well as the density of dendritic spines in the CA1 and DG neurons of the hippocampus; 5) high-frequency stimulation failed to induce the long-term potentiation (LTP) in the hippocampus after exposure to acrolein for 4 weeks; 6) decreased blood oxygen level-dependent (BOLD) signal in the olfactory bulb and induced high T2 signals in the hippocampus, which matched to the clinical observation in the brain of AD patients, and 7) activated RhoA/ROCK2/ p-cofilin-associated pathway in hippocampus of acrolein-treated mice, which may be the causes of synaptic damage and neuroinflammation in acrolein mice model. Taken together, the acrolein-induced sporadic AD mouse model closely reflects the pathological features of AD, which will be useful for the research on the mechanism of AD onset and the development of anti-AD drugs.


Assuntos
Acroleína/metabolismo , Doença de Alzheimer/metabolismo , Modelos Animais de Doenças , Fatores de Despolimerização de Actina/metabolismo , Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides/metabolismo , Animais , Células Cultivadas , Córtex Cerebral/metabolismo , Hipocampo/metabolismo , Hipocampo/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Bulbo Olfatório/fisiologia , Fragmentos de Peptídeos/metabolismo , Fosforilação , Ratos Sprague-Dawley , Sinapsinas/metabolismo , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Proteínas tau/metabolismo
20.
Neurochem Res ; 46(8): 2181-2191, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34032956

RESUMO

Application of chemotherapeutic oxaliplatin represses gene transcription through induction of DNA methylation, which may contribute to oxaliplatin-induced chronic pain. Here, Ddr1, which showed an increased methylation in the promoter, was screened from the SRA methylation database (PRJNA587622) after oxaliplatin treatment. qPCR and MeDIP assays verified that oxaliplatin treatment increased the methylation in Ddr1 promoter region and decreased the expression of DDR1 in the neurons of spinal dorsal horn. In addition, overexpression of DDR1 by intraspinal injection of AAV-hSyn-Ddr1 significantly alleviated the mechanical allodynia induced by oxaliplatin. Furthermore, we found that oxaliplatin treatment increased the expression of DNMT3b and ZEB1 in dorsal horn neurons, and promoted the interaction between DNMT3b and ZEB1. Intrathecal injection of ZEB1 siRNA inhibited the enhanced recruitment of DNMT3b and the hypermethylation in Ddr1 promoter induced by oxaliplatin. Finally, ZEB1 siRNA rescued the DDR1 downregulation and mechanical allodynia induced by oxaliplatin. In conclusion, these results suggested that the ZEB1 recruited DNMT3b to the Ddr1 promoter, which induced the DDR1 downregulation and contributed to the oxaliplatin-induced chronic pain.


Assuntos
Dor Crônica/metabolismo , Metilação de DNA/fisiologia , Receptor com Domínio Discoidina 1/genética , Oxaliplatina/efeitos adversos , Corno Dorsal da Medula Espinal/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Animais , Dor Crônica/induzido quimicamente , DNA/metabolismo , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Hiperalgesia/induzido quimicamente , Hiperalgesia/metabolismo , Masculino , Neuralgia/induzido quimicamente , Neuralgia/metabolismo , Regiões Promotoras Genéticas/fisiologia , RNA Interferente Pequeno/farmacologia , Ratos Sprague-Dawley , Corno Dorsal da Medula Espinal/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , DNA Metiltransferase 3B
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...