Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
1.
Inorg Chem ; 63(26): 12240-12247, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38946338

RESUMO

An unusual crystalline porous framework constructed from four types of cages, including all-inorganic Keggin-type polyoxometalate (POM) cages [H3W12O40]5-, organic hexamethylenetetramine (Hmt) cages, nanosized silver-Hmt coordination cages, and giant POM-silver-Hmt cages, was hydrothermally synthesized and structurally characterized. The framework features a highly symmetrical structure with one-dimensional nanoscale channels and holds good thermal/solvent stability, which endow it with proton conduction properties and heterogeneous catalytic activity for pyrazole. This paper not only contributes to broadening the structural diversity of cage-based crystalline porous framework materials but also sheds new light on the design of new functional framework materials.

2.
Inorg Chem ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39041605

RESUMO

Here, a case of bilayer heterojunction Pd-containing polyoxotungstate (POW), connecting a Te3Pd3 ring and an Anderson-like TeW6 cluster, has been synthesized. The Anderson-like cluster is the first example in POW. The coordination of Pd in the ring with the S atom on the sulfo group breaks the traditional coordination configuration of Pd and O in polyoxometalates (POMs), enriching the structural types of Pd-containing POMs. In addition, the hybrid bilayer heterojunction structure at the molecular level not only provides high thermal stability but also results in spatial arrangement anisotropy, leading to up to five times the anisotropic proton conductivity.

3.
Inorg Chem ; 63(20): 9204-9211, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38701353

RESUMO

In this work, a novel organodiphosphate-containing inorganic-organic hybrid polyoxoniobate (PONb) ring {(PO3CH2CH2PO3H)4Nb8O16}4- (Nb8P8) has been achieved by a one-pot hydrothermal method. The ring is constructed from a tetragonal {Nb8O36} motif and four {PO3CH2CH2PO3H} ligands. Interestingly, Nb8P8 can be joined together via K-H2O clusters {K2(H2O)4(OH)2} to form one-dimensional chains {[K2(H2O)4(OH)2]Nb8P8}n and further linked by {Cu(en)2}2+ (en = ethylenediamine) complexes, resulting in a three-dimensional supramolecular framework {[Cu(en)2]2[K2(H2O)4(OH)2]Nb8P8}·3en·H2O (1). 1 exhibits good chemical and thermal stability and has a high water vapor adsorption capacity of ≤224 cm3 g-1 (22.71 mol·mol-1) at 298 K, outperforming most of the known polyoxometalate-based materials. Impedance measurements prove that 1 can transfer protons with moderate conductivity. This study not only contributes to the structural diversity of organodiphosphate-containing PONbs and PONb rings but also provides a reference for the development of PONb-based materials with unique performance.

4.
Angew Chem Int Ed Engl ; 63(29): e202404314, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38712987

RESUMO

Atomically precise low-nuclearity (n<10) silver nanoclusters (AgNCs) have garnered significant interest due to their size-dependent optical properties and diverse applications. However, their synthesis has remained challenging, primarily due to their inherent instability. The present study introduces a new feasible approach for clustering silver ions utilizing highly negative and redox-inert polyoxoniobates (PONbs) as all-inorganic ligands. This strategy not only enables the creation of novel Ag-PONb composite nanoclusters but also facilitates the synthesis of stable low-nuclearity AgNCs. Using this method, we have successfully synthesized a small octanuclear rhombic [Ag8]6+ AgNC stabilized by six highly negative [LiNb27O75]14- polyoxoanions. This marks the first PONb-protected superatomic AgNC, designated as {Ag8@(LiNb27O75)6} (Ag8@Nb162), with an aesthetically spherical core-shell structure. The crystalline Ag8@Nb162 is stable under ambient conditions, What's more, it is water-soluble and able to maintain its molecular cluster structure intact in water. Further, the stable small [Ag8]6+ AgNC has interesting temperature- and pH-dependent reversible fluorescence response, based on which a multiple optical encryption mode for anti-counterfeit technology was demonstrated. This work offers a promising avenue for the synthesis of fascinating and stable PONb-protected AgNCs and sheds light on the development of new-type optical functional materials.

5.
Dalton Trans ; 53(11): 5258-5265, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38407346

RESUMO

An inorganic hexalanthanide-oxo-cluster-encapsulated antimotungstate, K2Na3H43[Nd6(OH)6(H2O)6(B-α-SbW9O33)4]2·67H2O (1), has been successfully synthesized by a facile one-step hydrothermal reaction method. The tetrahedron-shaped two-shell {Nd6(OH)6(H2O)6(B-α-SbW9O33)4}(1a) polyanion is composed of a novel pure lanthanide-oxo {Nd6(µ3-OH)6(H2O)6} octahedron and {(B-α-SbW9O33)4} tetrahedron. After being effectively loaded onto a glassy carbon electrode (GCE) by electrostatic adsorption using polydiallyldimethyl ammonium chloride (PDDA)-functionalized multi-walled carbon nanotubes (MWCNTs), compound 1 exhibits electrochemical activity for the reduction of bromate ions with good selectivity, a high sensitivity of 186 µA mM-1 and a detection limit that has reached 1.9 µM. To the best of our knowledge, this is the first example of an amperometric bromate sensor based on Ln-containing antimotungstates, which will provide new materials for electrochemical sensors.

6.
Inorg Chem ; 63(2): 1388-1394, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38166363

RESUMO

By variation of the amount of GeO2, two organic-inorganic hybrid germanoniobate frameworks with 6-connected pcu and 10-connected bct topologies were constructed from peanut-shaped {α-Ge12Nb38} and {ß-Ge12Nb38} clusters, respectively. The {α-Ge12Nb38} and {ß-Ge12Nb38} clusters contain the most Ge centers of germanoniobates reported so far. The compounds exhibit proton conduction properties with a conductivity of 3.04 × 10-4 S·cm-3 for 1 and 1.62 × 10-4 S·cm-3 for 2 at 85 °C and 98% RH. The water vapor adsorption capacities for 1 and 2 are 5.86 and 4.40 mmol·g-1, respectively.

7.
Dalton Trans ; 53(3): 1156-1162, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38105701

RESUMO

Two isostructural Co(Cd)-antimony-oxo tartrate cluster-based compounds with a one-dimensional (1-D) belt-like structure, namely H9.2[Co(H2O)6]{M0.5(H2O)3.5{M'(H2O)4[SbVO6[Co4.2(H2O)5SbIII6(µ3-O)2(tta)6]]}}2·nH2O (M = Co, M' = Co, n = 9 (1); M = Cd0.39/Co0.61, M' = Cd0.24/Co0.76, n = 7 (2); H4tta = tartaric acid), have been synthesized by solvothermal methods. It is noteworthy that the relatively rare mixed-valence Sb(III,V) exists in the structures. The anionic clusters in both compounds appear to be in a sandwich configuration; the top and bottom layers are based on {Sb3(µ3-O)(tta)3} brackets, and the intermediate layer is occupied by {SbVO6[Co4.2(H2O)5]}. The title compounds have been characterized by single-crystal X-ray diffraction, powder X-ray diffraction, elemental analyses, thermogravimetric analyses, and UV-Vis spectroscopy. We chose compound 2 as a representative to test its proton conductivity, and the results show that the conductivity can reach 1.42 × 10-3 S cm-1 at 85 °C under 98% relative humidity.

8.
Angew Chem Int Ed Engl ; 63(6): e202315338, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38126955

RESUMO

Helical morphologies are widely observed in nature, however, it is very challenging to prepare artificial helical polymers. Especially, precisely understanding the structure information of artificial metal-free helical covalent inorganic polymers via single-crystal X-ray diffraction (SCXRD) analysis is rarely explored. Here, we successfully prepare a novel metal-free helical covalent inorganic polymer ({[Te(C6 H5 )2 ] [PO3 (OH)]}n , named CityU-10) by introducing angular anions (HOPO3 2- ) into traditional tellurium-oxygen chains. The dynamic reversibility of the reaction is realized through the introduction of organic tellurium precursor and the slow hydrolysis of polyphosphoric acid. High-quality and large-size single crystals of CityU-10 have been successfully characterized via SCXRD, where the same-handed helical inorganic polymer chains form a pseudo-two-dimensional layer via multiple hydrogen-bonding interactions. The left-handed layers and right-handed layers alternatively stack together through weak hydrogen bonds to form a three-dimensional supramolecular structure. The single crystals of CityU-10 are found to display promising optical properties with a large birefringence. Our results would offer new guidelines for designing and preparing new crystalline covalent polymers through tellurium-based chemistry.

9.
Inorg Chem ; 62(26): 10044-10048, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37338532

RESUMO

A unique heteropolyoxotantalate (hetero-POTa) cluster [P2O7Ta5O14]7- (P2Ta5) was first developed using pyrophosphate as a key to open the ultrastable skeleton of the classical Lindqvist-type [Ta6O19]8- precursor. The P2Ta5 cluster can serve as a general and flexible secondary building unit to create a family of brand-new multidimensional POTa architectures. This work not only promotes the limited structural diversity of hetero-POTa but also provides a practical strategy for new extended POTa architectures.

10.
Angew Chem Int Ed Engl ; 62(26): e202302111, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37088713

RESUMO

Compounds with redox activities have appealing applications in catalytic, electronic and magnetic properties, but the redox inert of polyoxoniobates (PONbs) significantly limits their applications for a long time. In this work, we are able to integrate organophosphate and lanthanide cluster into PONb to create the first family of inorganic-organic hybrid organophosphate-Ln-PONb composite clusters. These novel species not only present the first family of redox active PONbs that can be reduced to form long-lived "heteropoly blues" under ambient conditions, but also a new photochromic system. More importantly, the analyses of the electronic configurations and photochromic properties for a series of designed proof-of-concept PONbs models allow us to discover a D-f-A electron transfer mechanism, that is, photoinduced electron is transferred from a photosensitive organophosphate electron donor (D) to the NbV electron acceptor (A) through the unoccupied 4 f-orbitals of Ln (f). This work paves the way for developing diverse PONb-based redox materials and expanding the possibility of the applications of PONbs in the redox chemistry.


Assuntos
Elétrons , Transporte de Elétrons , Oxirredução , Catálise
11.
Angew Chem Int Ed Engl ; 62(26): e202305260, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37118979

RESUMO

Only rarely have polyoxometalates been found to form core-shell nanoclusters. Here, we succeeded in isolating a series of rare giant and all-inorganic core-shell cobalt polyoxoniobates (Co-PONbs) with diverse shapes, nuclearities and original topologies, including 50-nuclearity {Co12 Nb38 O132 }, 54-nuclearity {Co20 Nb34 O128 }, 62-nuclearity {Co26 Nb36 O140 } and 87-nuclearity {Co33 Nb54 O188 }. They are the largest Co-PONbs and also the polyoxometalates containing the greatest number of Co ions and the largest cobalt clusters known thus far. These molecular Co-PONbs have intriguing and atomically precise core-shell architectures comprising unique cobalt oxide cores and niobate oxide shells. In particular, the encapsulated cobalt oxide cores with different nuclearities have identical compositions, structures and mixed-valence Co3+ /Co2+ states as the different sized Co-O moieties of the bulk cubic-spinel Co3 O4 , suggesting that they can serve as various molecular models of the cubic-spinel Co3 O4 . The successful construction of the series of the Co-PONbs reveals a feasible and versatile synthetic method for making rare core-shell heterometallic PONbs. Further, these new-type core-shell bimetal species are promising cluster molecular catalysts for visible-light-driven CO2 reduction.


Assuntos
Dióxido de Carbono , Óxidos , Óxidos/química , Cobalto/química
12.
Chem Commun (Camb) ; 59(25): 3735-3738, 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36896743

RESUMO

An oxalate-assisted strategy was first developed for creating new polyoxotantalates (POTas). With this strategy, two brand-new POTa supramolecular frameworks based on uncommon dimeric POTa secondary building units (SBUs) were constructed and characterized. Interestingly, the oxalate ligand can not only serve as a coordination ligand to form unique POTa SBUs but also act as a key hydrogen bond acceptor to construct supramolecular architectures. Besides, the architectures show outstanding proton conductivity. The strategy opens up new opportunities for developing new POTa materials.

13.
Front Chem ; 11: 1044953, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36846852

RESUMO

Breast cancer is the second most common cancer around the world. Triple-negative breast cancer (TNBC) is characterized by the absence of three receptors: progesterone, estrogen, and human epidermal growth factor-2 receptor (HER2). Various synthetic chemotherapies have gained attention but they caused unwanted side effects. Therefore, some secondary therapies are now becoming famous against this disease. For instance, natural compounds have been extensively researched against many diseases. However, enzymatic degradation and low solubility remain a major concern. To combat these issues, various nanoparticles have been synthesized and optimized from time to time, which increases its solubility and hence therapeutic potential of a particular drug increases. In this study, we have synthesized Poly D,L-lactic-co-glycolic acid (PLGA) loaded thymoquinone (TQ) nanoparticle (PLGA-TQ-NPs) and then coated them by chitosan (CS) (PLGA-CS-TQ-NPs), which was characterized by different methods. Size of non-coated NPs was 105 nm with PDI value of 0.3 and the size of coated NPs was 125 nm with PDI value of 0.4. Encapsulation efficiency (EE%) and Drug loading (DL%) was found to be 70.5 ± 2.33 and 3.38 for non-coated and 82.3 ± 3.11 and 2.66 for coated NPs respectively. We have also analysed their cell viability against MDA-MB-231 and SUM-149 TNBC cell lines. The resultant, nanoformulations exhibit anti-cancerous activity in a dose and time-dependent manner for MDA-MB-231 and SUM-149 cell lines with an IC50 value of (10.31 ± 1.15, 15.60 ± 1.25, 28.01 ± 1.24) and (23.54 ± 1.24, 22.37 ± 1.25, 35 ± 1.27) for TQ free, PLGA-TQ-NPs and PLGA-CS-TQ-NPs respectively. For the first time, we have developed a nanoformulations of PLGA loaded TQ coated with CS NPs (PLGA-CS-TQ-NPs) against TNBC which led to their enhanced anti-cancerous effects.

14.
Chem Commun (Camb) ; 59(20): 2927-2930, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36799226

RESUMO

The compound [(Nb6O19)@Ag34(tBuCC)24(CH3COO)2] (Ag34) was synthesized using the solvothermal method combined with volatilization. This was the first case, to the best of our knowledge, of isolating a silver cluster containing a polyoxoniobate (PONb) template. The luminescence, solution behavior and solid-state stability of Ag34 were studied in detail. Electrospray ionization mass spectrometry indicated that Ag34 can maintain the integrity of its skeleton in solution. Detection of temperature could be a potential application of its unique luminescent behavior. We expect this work to inspire further fabrications of PONb-templated high-nuclearity silver clusters.

15.
Dalton Trans ; 52(5): 1193-1197, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36688608

RESUMO

A rare cadmium-containing windmill-like heteropolyoxoniobate macrocycle has been successfully synthesized with stable 1-D cyclic cluster aggregates. The compound exhibited promising basic catalytic ability for Knoevenagel condensation with a high yield under mild reaction conditions and high cycling stability. The theoretical calculation showed that the promising basic catalytic ability is due to the dense and stronger basic sites of the surface terminal O atoms.

16.
Environ Res ; 219: 115089, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36529332

RESUMO

In the present work, the synthesis of cellulose nanowhiskers (CNW)/chitosan nanocomposite films via deep eutectic solvents (DES) changing the chemical structures were carried out. It was observed that a pure chitosan film has broadband at 3180-3400 cm-1, indicating amide and hydroxyl groups. Upon CNW incorporation, the peak gets sharper and stronger and shifts to a greater wavelength. Further, the addition of DES infuses more elements of amide into the nanocomposite films. Moreover, the mechanical properties incorporating CNW filler into a chitosan matrix show an enhancement in tensile strength (TS), Young's modulus (YM), and elongation at break. The TS and YM increase while the elongation decrease as the CNW concentration increases. The YM of biocomposite films is increased to 723 MPa at 25% CNW into chitosan films. Besides, the TS has enhanced to 11.48 MPa at 15% CNW concentration in the biocomposite films. The elongation at break has decreased to 11.7% at 25% CNW concentration. Hence, incorporating CNW into the chitosan matrix via DES can still improve the mechanical properties of the nanocomposite films. Therefore, the application of DES results in a lower YM and TS as the films are hygroscopic. In conclusion, DES can be considered the new green solvent media for synthesizing materials. It has the potential to replace ionic liquids due to its biodegradability and non-toxic properties while preserving the character of low-vapour pressure. Besides that, chitosan can be used as potential material for applications in process industries, such as the biomedical and pharmaceutical industries. Thus, DES can be used as a green solvent and aim to reduce the toxic effect of chemicals on the environment during chemical production.


Assuntos
Quitosana , Nanocompostos , Celulose/química , Quitosana/química , Solventes Eutéticos Profundos , Solventes , Nanocompostos/química
17.
Angew Chem Int Ed Engl ; 62(7): e202217926, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36484495

RESUMO

This work reports the interesting and unique cation-exchange behaviors of the first indium-bridged purely inorganic 3D framework based on high-nuclearity polyoxoniobates as building units. Each nanoscale polyoxoniobate features a fascinating near-icosahedral core-shell structure with six pairs of unique inorganic "molecular tweezers" that have changeable openings for binding different metal cations via ion-exchanges and exhibit unusual selective metal-uptake behaviors. Further, the material has high chemical stability so that can undergo single-crystal-to-single-crystal metal-exchange processes to produce a dozen new crystals with high crystallinity. Based on these crystals and time-dependent metal-exchange experiments, we can visually reveal the detailed metal-exchange interactions and mechanisms of the material at the atomic precision level. This work demonstrates a rare systematic and atomic-level study on the ion-exchange properties of nanoclusters, which is of significance for the exploration of cluster-based ion-exchange materials that are still to be developed.

18.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-981127

RESUMO

OBJECTIVES@#The aim of this study was to compare the anterior and posterior occlusal plane characteristics of patients with different temporomandibular joint osseous statuses.@*METHODS@#A total of 306 patients with initial cone beam CT (CBCT) and cephalograms were included. They were divided into three groups on the basis of their temporomandibular joint osseous status: bilateral normal (BN) group, indeterminate for osteoarthrosis (I) group, and osteoarthrosis (OA) group. The anterior and posterior occlusal planes (AOP and POP) of the different groups were compared. Then, the regression equation was established after adjusting for confounding factors, and a correlation analysis between the occlusion planes and other parameters was performed.@*RESULTS@#SNA, SNB, FMA, SN-MP, Ar-Go, and S-Go were correlated with the occlusal planes. Relative to the BN and I groups, the FH-OP of the OA group increased by 1.67° on the average, FH-POP increased by 1.42° on the average, and FH-AOP increased by 2.05° on the average.@*CONCLUSIONS@#The occlusal planes were steeper in the patients with temporomandibular osteoarthrosis than in the patients without it, and the mandible rotated downward and backward. The height of the mandibular ramus, the mandibular body length, and the posterior face height were small. In clinical practice, attention should be given to the potential risk of temporomandibular joint osteoarthrosis in such patients. In addition, SNB, FMA, SN-MP, Ar-Go, S-Go, and occlusal planes had moderate correlations.


Assuntos
Humanos , Oclusão Dentária , Cefalometria , Mandíbula , Transtornos da Articulação Temporomandibular/diagnóstico por imagem , Articulação Temporomandibular/diagnóstico por imagem , Osteoartrite/diagnóstico por imagem , Côndilo Mandibular
19.
STOMATOLOGY ; (12): 57-61, 2023.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-965142

RESUMO

Objective@# To analyze the correlation between third molar agenesis and craniofacial morphology by studying the location and number of congenital missing third molars and results of craniofacial cephalometric measurement. @*Methods@# A total of 123 patients were included, including 64 patients in the control group without congenital third molar absence and 59 patients in the absence group with at least one third molar absent. Cephalometric measurements included FMA, IMPA, AR-Go, GoGn-Sn, Co-A, Co-Gn, ANS-Me, Go-Me, SN-MP, Ar-Go-Me, SNA, SNB, ANB, Y-axis angle, Y-axis length, Ar-Go, Go-Me, MP-OP, FH-PP, FH-OP, a total of 18 bone tissue indicators, U1-SN, U1-L1, U1-NA, L1-NB, U1-APo and L1-APo, a total of 6 dental indicators, and UL-EP, LL-EP and nasolabial angle, a total of 3 soft tissue indicators. The correlation between congenital agenesis of third molars and craniofacial morphology was analyzed. @*Results@# The most common missing location of the third molar occured in the upper jaw and the most common number of missing teeth was one. In control group, Ar-Go-Me and SN-MP were larger (P<0.05), U1-SN, U1-NA, L1-NB, UL-EP and LL-EP were larger (P<0.05), and U1-L1 was smaller (P<0.01). There were no significant differences in Ar-Go and Go-Me between the two groups(P>0.05). @*Conclusion @#Patients with four third molars are more likely to have backward and downward rotation of the mandible and are more likely to develop into a convex facial type than patients with missing third molars, which has a higher correlation with hyperdivergent growth pattern and convex facial type.

20.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-980181

RESUMO

ObjectiveThe transcriptome characteristics of different tissues of Codonopsis pilosula were analyzed to illustrate the genetic basis of the accumulation of active ingredients in the root of C. pilosula, and to provide theoretical basis for its high-quality production and cultivation. MethodDifferent tissues of C. pilosula at flowering stage were selected as experimental materials, and the contents of tangshenoside Ⅰ, lobetyolin and atractylenolide Ⅲ were detected by high performance liquid chromatography(HPLC). RNA-Seq was used to perform transcriptome sequencing of different tissues, and the differentially expressed genes were screened and analyzed by Gene Ontology(GO) and Kyoto Gene and Encyclopedia of Genes and Genomes(KEGG) enrichment analysis, in order to explore the characteristics of active compound distribution and the transcriptional profiles. ResultThe contents of polysaccharides and tangshenoside Ⅰ in the root of C. pilosula were significantly higher than those in other tissues. The transcriptional profiles of the root were significantly different from those of stem, leaf and flower. Cluster analysis, GO and KEGG enrichment analysis of differential gene expression showed that the differential expression genes were mainly enriched in flavonoid and phenylpropanoid biosynthesis, sucrose-starch metabolism, plant hormone signal transduction, plant-pathogen interaction, mitogen-activated protein kinase(MAPK) cascade signal transduction, Adenosine triphosphate(ATP)-binding cassette(ABC) transporter and other pathways. The expression of genes related to biosynthesis of phenylpropanoid compounds were significantly up-regulated in the roots and flowers, and ABC transporter proteins were mostly highly expressed in the flowers. The expression of key enzyme genes for polysaccharide synthesis, such as sucrose:sucrose 1-fructosyltransferase(1-SST) and fructan 1-exohydrolase(1-Feh), were significantly up-regulated in the roots, and a large number of stress-responsive genes closely related to the accumulation of secondary metabolites were significantly up-regulated in the roots. ConclusionThe active compound content and transcriptional profiles in C. pilosula roots were significantly different from those in stem, leaf, flower and other tissues, showing tissue specificity. Meanwhile, the genes related to stress response and biosynthesis of active compound, such as fructan and phenylpropanoid compounds, were up-regulated in roots of C. pilosula.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...