Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Plant Physiol Biochem ; 210: 108615, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38631158

RESUMO

Magnesium is one of the essential nutrients for plant growth, and plays a pivotal role in plant development and metabolism. Soil magnesium deficiency is evident in citrus production, which ultimately leads to failure of normal plant growth and development, as well as decreased productivity. Citrus is mainly propagated by grafting, so it is necessary to fully understand the different regulatory mechanisms of rootstock and scion response to magnesium deficiency. Here, we characterized the differences in morphological alterations, physiological metabolism and differential gene expression between trifoliate orange rootstocks and lemon scions under normal and magnesium-deficient conditions, revealing the different responses of rootstocks and scions to magnesium deficiency. The transcriptomic data showed that differentially expressed genes were enriched in 14 and 4 metabolic pathways in leaves and roots, respectively, after magnesium deficiency treatment. And the magnesium transport-related genes MHX and MRS2 may respond to magnesium deficiency stress. In addition, magnesium deficiency may affect plant growth by affecting POD, SOD, and CAT enzyme activity, as well as altering the levels of hormones such as IAA, ABA, GA3, JA, and SA, and the expression of related responsive genes. In conclusion, our research suggests that the leaves of lemon grafted onto trifoliate orange were more significantly affected than the roots under magnesium-deficient conditions, further indicating that the metabolic imbalance of scion lemon leaves was more severe.


Assuntos
Citrus , Regulação da Expressão Gênica de Plantas , Magnésio , Plântula , Citrus/metabolismo , Citrus/genética , Plântula/metabolismo , Plântula/genética , Plântula/crescimento & desenvolvimento , Magnésio/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Deficiência de Magnésio/metabolismo , Folhas de Planta/metabolismo , Estresse Fisiológico , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
2.
Phytochemistry ; 222: 114096, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38641141

RESUMO

Forsythiae Fructus (FF), the dried fruit of F. suspensa, is commonly used to treat fever, inflammation, etc in China or other Asian countries. FF is usually used as the core herb in traditional Chinese medicine preparations for the treatment of influenza, such as Shuang-huang-lian oral liquid and Yin-qiao powder, etc. Since the wide application and core role of FF, its research progress was summarized in terms of traditional uses, phytochemistry, pharmacology, pharmacokinetics, quality control, and toxicity. Meanwhile, the anti-influenza substances and mechanism of FF were emphasized. Till now, a total of 290 chemical components are identified in F. suspensa, and among them, 248 components were isolated and identified from FF, including 42 phenylethanoid glycosides, 48 lignans, 59 terpenoids, 14 flavonoids, 3 steroids, 24 cyclohexyl ethanol derivatives, 14 alkaloids, 26 organic acids, and 18 other types. FF and their pure compounds have the pharmacological activities of anti-virus, anti-inflammation, anti-oxidant, anti-bacteria, anti-tumor, neuroprotection, hepatoprotection, etc. Inhibition of TLR7, RIG-I, MAVS, NF-κB, MyD88 signaling pathway were the reported anti-influenza mechanisms of FF and phenylethanoid glycosides and lignans are the main active groups. However, the bioavailability of phenylethanoid glycosides and lignans of FF in vivo was low, which needed to be improved. Simultaneously, the un-elucidated compounds and anti-influenza substances of FF strongly needed to be explored. The current quality control of FF was only about forsythoside A and phillyrin, more active components should be taken into consideration. Moreover, there are no reports of toxicity of FF yet, but the toxicity of FF should be not neglected in clinical applications.


Assuntos
Forsythia , Controle de Qualidade , Forsythia/química , Humanos , Frutas/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Compostos Fitoquímicos/isolamento & purificação , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/isolamento & purificação , Animais , Estrutura Molecular
3.
Discov Oncol ; 15(1): 31, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38324023

RESUMO

Cancer has become one of the most important causes of human death. In particular, the 5 year survival rate of patients with digestive tract cancer is low. Although chemotherapy drugs have a certain efficacy, they are highly toxic and prone to chemotherapy resistance. With the advancement of antitumor research, many natural drugs have gradually entered basic clinical research. They have low toxicity, few adverse reactions, and play an important synergistic role in the combined targeted therapy of radiotherapy and chemotherapy. A large number of studies have shown that the active components of Paris polyphylla (PPA), a common natural medicinal plant, can play an antitumor role in a variety of digestive tract cancers. In this paper, the main components of PPA such as polyphyllin, C21 steroids, sterols, and flavonoids, amongst others, are introduced, and the mechanisms of action and research progress of PPA and its active components in the treatment of various digestive tract cancers are reviewed and summarized. The main components of PPA have been thoroughly explored to provide more detailed references and innovative ideas for the further development and utilization of similar natural antitumor drugs.

4.
Nat Commun ; 14(1): 6851, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37891176

RESUMO

Dual-interfacial structure within catalysts is capable of mitigating the detrimentally completive adsorption during the catalysis process, but its construction strategy and mechanism understanding remain vastly lacking. Here, a highly active dual-interfaces of CeO2-x/CoO1-x/Co is constructed using the pronounced interfacial interaction from surrounding small CeO2-x islets, which shows high activity in catalyzing the water-gas shift reaction. Kinetic evidence and in-situ characterization results revealed that CeO2-x modulates the oxidized state of Co species and consequently generates the dual active CeO2-x/CoO1-x/Co interface during the WGS reaction. A synergistic redox mechanism comprised of independent contribution from dual functional interfaces, including CeO2-x/CoO1-x and CoO1-x/Co, is authenticated by experimental and theoretical results, where the CeO2-x/CoO1-x interface alleviates the CO poison effect, and the CoO1-x/Co interface promotes the H2 formation. The results may provide guidance for fabricating dual-interfacial structures within catalysts and shed light on the mechanism over multi-component catalyst systems.

5.
Clin Transl Gastroenterol ; 14(7): e00602, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37235793

RESUMO

INTRODUCTION: Keverprazan is a novel potassium-competitive acid blocker for the treatment of acid-related disorders requiring potent acid inhibition. This study aimed to establish the noninferiority of keverprazan to lansoprazole in the treatment of patients with duodenal ulcer (DU). METHODS: In this phase III, double-blind, multicenter study, 360 Chinese patients with endoscopically confirmed active DU were randomized 1:1 to take either keverprazan (20 mg) or lansoprazole (30 mg) treatment for up to 6 weeks. The primary end point was DU healing rate at week 6. The secondary end point was DU healing rate at week 4. Symptom improvement and safety were also assessed. RESULTS: Based on the full analysis set, the cumulative healing rates at week 6 were 94.4% (170/180) and 93.3% (166/178) for keverprazan and lansoprazole, respectively (difference: 1.2%; 95% confidence intervel: -4.0%-6.5%). At week 4, the respective healing rates were 83.9% (151/180) and 80.3% (143/178). In the per protocol set, the 6-week healing rates in keverprazan and lansoprazole groups were 98.2% (163/166) and 97.6% (163/167), respectively (difference: 0.6%; 95% confidence intervel: -3.1%-4.4%); the 4-week healing rates were respectively 86.8% (144/166) and 85.6% (143/167). Keverprazan was noninferior to lansoprazole in DU healing after the treatment for 4 and 6 weeks. The incidence of treatment-emergent adverse events was comparable among groups. DISCUSSION: Keverprazan 20 mg had a good safety profile and was noninferior to lansoprazole 30 mg once daily for DU healing.


Assuntos
Antiulcerosos , Úlcera Duodenal , Humanos , Lansoprazol/efeitos adversos , Úlcera Duodenal/tratamento farmacológico , Úlcera Duodenal/induzido quimicamente , Antiulcerosos/efeitos adversos , Método Duplo-Cego
6.
J Am Chem Soc ; 145(4): 2252-2263, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36657461

RESUMO

It is highly desirable to fabricate an accessible catalyst surface that can efficiently activate reactants and desorb products to promote the local surface reaction equilibrium in heterogeneous catalysis. Herein, rare-earth oxycarbonates (Ln2O2CO3, where Ln = La and Sm), which have molecular-exchangeable (H2O and CO2) surface structures according to the ordered layered arrangement of Ln2O22+ and CO32- ions, are unearthed. On this basis, a series of Ln2O2CO3-supported Cu catalysts are prepared through the deposition precipitation method, which provides excellent catalytic activity and stability for the water-gas shift (WGS) reaction. Density functional theory calculations combined with systematic experimental characterizations verify that H2O spontaneously dissociates on the surface of Ln2O2CO3 to form hydroxyl by eliminating the carbonate through the release of CO2. This interchange efficiently promotes the WGS reaction equilibrium shift on the local surface and prevents the carbonate accumulation from hindering the active sites. The discovery of the unique layered structure provides a so-called "self-cleaning" active surface for the WGS reaction and opens new perspectives about the application of rare-earth oxycarbonate nanomaterials in C1 chemistry.

7.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-970684

RESUMO

To explore the feasibility of applying magnetic stimulation technology to the movement control of animal robots, the influence of coil radius, number of turns and other factors on the intensity, depth and focus of magnetic stimulation was simulated and analyzed for robot pigeons. The coil design scheme was proposed. The coil was placed on the head and one of the legs of the pigeon, and the leg electromyography (EMG) was recorded when magnetic stimulation was performed. Results showed that the EMG was significantly strengthened during magnetic stimulation. With the reduction of the output frequency of the magnetic stimulation system, the output current was increased and the EMG was enhanced accordingly. Compared with the brain magnetic stimulation, sciatic nerve stimulation produced a more significant EMG enhancement response. This indicated that the magnetic stimulation system could effectively modulate the functions of brain and peripheral nerves by driving the coil. This study provides theoretical and experimental guidance for the subsequent optimization and improvement of practical coils, and lays a preliminary theoretical and experimental foundation for the implementation of magnetic stimulation motion control of animal robots.


Assuntos
Animais , Columbidae , Robótica , Movimento (Física) , Encéfalo , Fenômenos Magnéticos
8.
Ann Transl Med ; 10(6): 347, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35434032

RESUMO

Background: Ulcerative colitis (UC) is an inflammatory bowel disease which seriously affects the quality of life of patients. There has been an increasing amount of research related to the therapeutic effects and mechanisms of natural plant substances in the treatment of recurrent UC. Rauwolfia verticillata var. Hainanensis is a medicinal plant that is native to Hainan Island, China. Some studies have documented that pectic polysaccharides (PPs) from Rauvolfia inhibited the progression of colon ulcers. However, their mechanisms of action have not been established. Studies have revealed that suppressing pyroptosis can attenuate the damage of experimental colitis. However, it is unclear whether PPs from Rauvolfia verticillata inhibit inflammation through pyroptosis. This study investigated the effects and potential mechanisms of PPs extracted from Rauvolfia verticillata on experimental UC in mice. Methods: Male C57 mice (6-8 weeks old) were allocated into the control group, the dextran sulfate sodium (DSS)-induced UC model group (DSS group), or the DSS with pectic polysaccharides treatment group (DSS + PP group). The body weights, rectal bleeding, and stool consistencies in the mice were observed, and the disease activity index (DAI) score was calculated. Colon tissues were collected for pathological analysis by histological hematoxylin and eosin (H&E) staining. The levels of caspase-1 and interleukin (IL)-1ß were detected by immunohistochemistry. Pyroptosis was assessed by transmission electron microscopy. Results: UC in mice induced by DSS resulted in decreased general physical activity and body weight, increased DAI score, significant histological changes, inhibited caspase-1 and IL-1ß expression, and promoted pyroptosis. These DSS-induced changes could be partially ameliorated by administration of PP. Conclusions: PPs exerted an ameliorative effect on DSS-induced UC in mice by reducing pyroptosis.

9.
Biosci Biotechnol Biochem ; 86(3): 331-339, 2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-34888627

RESUMO

As one of the most common pathological changes in trauma and surgery practice, intestinal ischemia-reperfusion (I/R) injury is regarded as a major precipitating factor in the occurrence and development of fatal diseases. BRCA1-BRCA2-containing complex subunit 36 (BRCC36), a deubiquitinase, has been proved important in a variety of pathophysiological processes such as DNA repair, cell cycle regulation, tumorigenesis, and inflammatory response. However, the effect of BRCC36 on intestinal mucosal barrier injury after I/R has not been fully elucidated. Our research found that BRCC36 aggravated intestinal mucosal barrier injury caused by bone morphogenetic protein 2 after I/R by downregulating peroxisome proliferator-activated receptor-γ (PPARγ) signaling. These results suggested that BRCC36/PPARγ axis might serve as a potential therapeutic target for preventing intestinal mucosal barrier injury after I/R.


Assuntos
PPAR gama
10.
Bioengineered ; 12(2): 12722-12739, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34895044

RESUMO

Ulcerative colitis (UC) is a chronic inflammatory disease of the colon. M2 macrophages possess certain anti-inflammation activity. Accordingly, the current study set out to investigate the potential mechanism of M2 macrophage-derived extracellular vesicles (M2-EVs) in UC inflammation. Firstly, mouse peritoneal macrophages were induced to M2 phenotype, and M2-EVs were isolated. , the murine model of UC was established, and the length and weight of the colon, disease activity index (DAI), apoptosis, and inflammatory response of UC mice were measured. Young adult mouse colon (YAMC) cells were induced with the help of lipopolysaccharide. LncRNA maternally expressed 3 (LncRNA MEG3), miR-20b-5p, and cAMP responsive element binding protein 1 (CREB1) expression patterns were detected in UC models. In addition, we analyzed the binding relationship among MEG3, miR-20b-5p, and CREB1. UC mice presented with shortened colon length, lightened weight, increased DAI score, enhanced apoptosis, and significant inflammatory cell infiltration, while M2-EVs reversed these trends. In vitro, M2-EVs increased UC cell viability and reduced inflammation. Mechanistic experimentation revealed that M2-EVs transferred MEG3 into YAMC cells to up-regulate MEG3 expression and promote CREB1 transcription by competitively binding to miR-20b-5p. Moreover, up-regulation of MEG3 in M2-EVs enhanced the protective effect of M2-EVs on UC cells, while over-expression of miR-20b-5p attenuated the aforementioned protective effect of M2-EVs on UC mice and cells. Collectively, our findings revealed that M2-EVs carrying MEG3 enhanced UC cell viability and reduced inflammatory responses via the miR-20b-5p/CREB1 axis, thus alleviating UC inflammation.


Assuntos
Colite Ulcerativa/genética , Colite Ulcerativa/patologia , Vesículas Extracelulares/metabolismo , Inflamação/genética , Macrófagos/metabolismo , Macrófagos/patologia , RNA Longo não Codificante/metabolismo , Animais , Sequência de Bases , Ligação Competitiva , Linhagem Celular , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Inflamação/patologia , Lipopolissacarídeos , Masculino , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Substâncias Protetoras/metabolismo , RNA Longo não Codificante/genética , Transcrição Gênica
11.
Pharmacology ; 106(9-10): 488-497, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34237728

RESUMO

BACKGROUND: Colorectal cancer (CRC) is one of the most frequent digestive tract tumors in the world with an increasing incidence. Currently, surgical resection and chemotherapy are the main therapeutic options; however, their effects are limited by various adverse reactions. Rauwolfia vomitoria extract (Rau) has been shown to repress the progression of multiple human cancers; however, whether Rau plays a role in CRC remains undetermined. METHODS: Influences of Rau treatment on HCT-116 and LoVo cells were estimated via MTT and colony formation experiments. Flow cytometry analysis was adopted to evaluate the apoptosis rate of HCT-116 and LoVo cells. Apoptosis-related proteins (Bcl-2, Bax, and caspase-3) and autophagy-related proteins (LC3 and P62) were assessed by Western blotting. Effects of Rau on autophagy of HCT-116 and LoVo cell were evaluated through GFP-LC3 analysis. In vivo xenograft tumor assay was conducted to further examine the role of Rau in CRC tumor growth. RESULTS: Rau remarkably repressed HCT-116 and LoVo cell viability and promoted HCT-116 and LoVo cell apoptosis in vitro in a dose-dependent manner. Rau increased the expression of caspase-3 and Bax and decreased the expression of Bcl-2 in HCT-116 and LoVo cells. Moreover, Rau was demonstrated to decrease the LC3||/LC3| ratio and increase the level of P62 in HCT-116 and LoVo cells. In addition, we found that Rau repressed xenograft tumor growth and also repressed autophagy in vivo. CONCLUSION: Our findings revealed that Rau repressed CRC cell viability and autophagy in vitro and in vivo, suggesting that Rau might be a potent therapeutic agent of CRC.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Neoplasias Colorretais/patologia , Extratos Vegetais/farmacologia , Rauwolfia , Animais , Proteínas Reguladoras de Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Nanoscale ; 13(19): 8931-8939, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-33956009

RESUMO

Production of formate via CO2/bicarbonate hydrogenation using cheap metal-based heterogeneous catalysts is attractive. Herein, we report the organometallic synthesis of a foam-like Ni@Ni(OH)2 composite nanomaterial which exhibited remarkable air stability and over 2 times higher catalytic activity than commercial RANEY® Ni catalyst in formate synthesis. Formate generation was achieved with an optimal rate of 6.0 mmol gcat-1 h-1 at 100 °C, a significantly lower operation temperature compared to the 200-260 °C reported in the literature. Deep characterization evidenced that this nanomaterial was made of an amorphous Ni(OH)2 phase covering metallic Ni sites; a core-shell structure which is crucial for the stability of the catalyst. The adsorption of bicarbonates onto the Ni@Ni(OH)2 catalyst was found to be a kinetically relevant step in the reaction, and the Ni-Ni(OH)2 interface was found to be beneficial for both CO2 and H2 activation thanks to a cooperative effect. Our findings emphasize the underestimated potential of Ni-based catalysts in CO2 hydrogenation to formate, indicating a viable strategy to develop stable, cheap metal catalysts for greener catalytic applications.

13.
Front Cardiovasc Med ; 8: 658952, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33969023

RESUMO

Objective: To determine the effect of renal artery stenosis (RAS) resulting from acute type B aortic dissection (ATBAD) with thoracic endovascular aortic repair (TEVAR) on early prognosis in patients with ATBAD. Methods: A total of 129 ATBAD patients in the National Acute Aortic Syndrome Database (AASCN) who underwent TEVAR between 2019 and 2020 were enrolled in our study. Patients were divided into two groups: the RAS group and the non-RAS group. Results: There were 21 RAS patients (16.3%) and 108 non-RAS patients (83.7%) in our cohort. No patient in our cohort died during the 1-month follow-up. There was no significant difference in preoperative creatinine clearance rate (CCr) between the two groups (90.6 ± 46.1 µmol/L in the RAS group vs. 78.7 ± 39.2 µmol/L in the non-RAS group, P = 0.303) but the RAS group had a significantly lower estimated glomerular filtration rate (eGFR) than the non-RAS group (83.3 ± 25.0 vs. 101.9 ± 26.9 ml/min, respectively; P = 0.028).One month after TEVAR, CCr was significantly higher (99.0 ± 68.1 vs. 78.5 ± 25.8 ml/min, P = 0.043) and eGFR (81.7 ± 23.8 vs. 96.0 ± 20.0 ml/min, P = 0.017) was significantly lower in the RAS group than in the non-RAS group. Conclusions: In ATBAD, RAS could result in acute kidney injury (AKI) in the early stage after TEVAR. The RAS group had a high incidence of hypertension. These results suggest that patients with RAS may need further treatment.

14.
Inorg Chem ; 60(7): 5183-5189, 2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33761745

RESUMO

A facile spray pyrolysis method is introduced to construct the hollow CeO2-Al2O3 spheres with atomically dispersed Fe. Only nitrates and ethanol were involved during the one-step preparation process using the ultrasound spray pyrolysis approach. Detailed explorations demonstrated that differences in the pyrolysis temperature of the precursors and heat transfer are crucial to the formation of the hollow nanostructure. In addition, iron species were in situ atomically dispersed on the as-formed CeO2-Al2O3 hollow spheres via this strategy, which demonstrated promising potential in transferring syn-gas to valuable gasoline products.

15.
J Am Chem Soc ; 142(31): 13362-13371, 2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32658462

RESUMO

Apart from active metals, supports also contribute significantly to the catalytic performance of supported metal catalysts. On account of the formed strain and defects, the heterostructured surface of the support may play a crucial role to activate the reactant molecules, while it is usually neglected. In this work, the Pt/γ-Mo2N catalyst was prepared via a facile solution method. This Pt/γ-Mo2N catalyst showed excellent activity and stability for catalyzing the water-gas shift (WGS) reaction. The reaction rates at 240 °C were 16.5 molCO molPt-1s-1 in product-free gas and 5.36 molCO molPt-1 s-1 in full reformate gas, which were almost 20 times that of the catalysts reported. It is found that the molybdenum species in the surface of the Pt/γ-Mo2N catalyst is molybdenum oxide as MoO3. This surface MoO3 is very easily reduced even at room temperature, and it transformed into highly distorted MoOx (2 < x < 3) in the WGS reaction. The MoOx on the catalyst surface greatly enhanced the capability of generating active oxygen vacancies to dissociate H2O molecules, which induced unexpectedly superior catalytic performance. Therefore, the intrinsically active surface in the Pt/γ-Mo2N catalyst for the WGS reaction was molybdenum oxide as MoOx (2 < x < 3).

16.
BMC Med Inform Decis Mak ; 20(1): 113, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32552734

RESUMO

BACKGROUND: Due to the increasing complexity in socioeconomic environments and the ambiguity in human cognition, decision makers prefer to give linguistic cognitive information with different granularities according to their own preferences. Consequently, to consider the uncertainty and preferences in the evaluation process, a method based on Multi-Granularity Linguistic Information (MGLI) for evaluating teleconsultation service quality is proposed, which provides a new research direction for scientific evaluation and improvement of teleconsultation service quality. METHODS: Firstly, this paper explored a service quality evaluation system from the perspective of regional doctors. And then considering the uncertainty and preferences of decision makers, MGLI was used to optimize the index system according to the similarity degree between the linguistic evaluation information and a given linguistic term set. Finally, the empirical research was conducted using Henan Province Telemedicine Center of China (HTCC) as an example to identify the direction for improving the service quality in teleconsultation. RESULTS: This study found that the number of consulting rooms, attitude of operators, consultation duration, charges, and attitude of experts are the key factors affecting the quality of teleconsultation service. CONCLUSIONS: Suggestions for improving the quality of teleconsultation service are put forward in terms of optimizing the allocation of consulting rooms, improving regional doctors' experience and standardizing charging standards, which provides a new direction for improving the quality of teleconsultation service.


Assuntos
Médicos , Consulta Remota , Telemedicina , China , Humanos , Linguística
17.
Yi Chuan ; 42(5): 493-505, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32431300

RESUMO

Xinjiang inbred cattle is a population which has been highly inbred for 45 years. However, the breed origin of this population cannot be traced back due to the lack of original records. To demonstrate the genetic background of Xinjiang inbred cattle, we analysed the worldwide genomic information of 16 cattle breeds using principal components analysis, and Admixture method. Furthermore, the shared SNP markers of Xinjiang inbred cattle, local Kazakh cattle, Holstein cattle, and Xinjiang Brown cattle were extracted to calculate population genetic parameters and genomic inbreeding indicators in order to evaluate the magnitude of inbreeding in each population. We also evaluated the relationship between inbreeding indicators and body size in the Xinjiang inbred population. Finally, the high frequency runs of homozygosity (ROH) regions for Xinjiang inbred cattle and local Kazakh population were selected for genes and QTL annotations. These results demonstrate that the ancestry proportions of inbreeding breed are similar to those of Kazakh cattle. The genomic homozygosity of Xinjiang inbred cattle is significantly higher than other populations; the inbreeding depression is observed in body size to a certain extent because body size decreased when corresponding homozygosity increased. Totally, six basic bio-pathways and 32 QTL regions that related to bovine economical traits were annotated. Our results provide the insights into breeding strategies, future protection, and utilization plan design for this special genetic material-Xinjiang inbred cattle.


Assuntos
Cruzamento , Bovinos/genética , Homozigoto , Polimorfismo de Nucleotídeo Único , Animais , Patrimônio Genético , Genômica , Endogamia
18.
J Am Chem Soc ; 141(44): 17548-17557, 2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31607122

RESUMO

The construction of stable active site in nanocatalysts is of great importance but is a challenge in heterogeneous catalysis. Unexpectedly, coordination-unsaturated and atomically dispersed copper species were constructed and stabilized in a sintered copper-ceria catalyst through air-calcination at 800 °C. This sintered copper-ceria catalyst showed a very high activity for CO oxidation with a CO consumption rate of 6100 µmolCO·gCu-1·s-1 at 120 °C, which was at least 20 times that of other reported copper catalysts. Additionally, the excellent long-term stability was unbroken under the harsh cycled reaction conditions. Based on a comprehensive structural characterization and mechanistic study, the copper atoms with unsaturated coordination in the form of Cu1O3 were identified to be the sole active site, at which both CO and O2 molecules were activated, thus inducing remarkable CO oxidation activity with a very low copper loading (1 wt %).

19.
Zookeys ; 842: 153-161, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31130810

RESUMO

Two new species of the genus Yunnanomonticola Telnov, 2002 are described based on the specimens collected in China. Yunnanomonticolalatissima sp. n. is collected from Yunnan and Y.tenuipenis sp. n. is from Guizhou. Photographes of the new species are provided, with a key to the three species of Yunnanomonticola.

20.
J Am Chem Soc ; 141(11): 4613-4623, 2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30807152

RESUMO

The crucial role of the metal-oxide interface in the catalysts of the water-gas shift (WGS) reaction has been recognized, while the precise illustration of the intrinsic reaction at the interfacial site has scarcely been presented. Here, two kinds of gold-ceria catalysts with totally distinct gold species, <2 nm clusters and 3 to 4 nm particles, were synthesized as catalysts for the WGS reaction. We found that the gold cluster catalyst exhibited a superiority in reactivity compared to gold nanoparticles. With the aid of comprehensive in situ characterization techniques, the bridged -OH groups that formed on the surface oxygen vacancies of the ceria support are directly determined to be the sole active configuration among various surface hydroxyls in the gold-ceria catalysts. The isotopic tracing results further proved that the reaction between bridged surface -OH groups and CO molecules adsorbed on interfacial Au atoms contributes dominantly to the WGS reactivity. Thus, the abundant interfacial sites in gold clusters on the ceria surface induced superior reactivity compared to that of supported gold nanoparticles in catalyzing the WGS reaction. On the basis of direct and solid experimental evidence, we have obtained a very clear image of the surface reaction for the WGS reaction catalyzed by the gold-ceria catalyst.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...