Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2402998, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38716678

RESUMO

Aqueous zinc-based batteries (AZBs) are promising energy storage solutions with remarkable safety, abundant Zn reserve, cost-effectiveness, and relatively high energy density. However, AZBs still face challenges such as anode dendrite formation that reduces cycling stability and limited cathode capacity. Recently, low-dimensional metal-organic frameworks (LD MOFs) and their derivatives have emerged as promising candidates for improving the electrochemical performance of AZBs owing to their unique morphologies, high structure tunability, high surface areas, and high porosity. However, clear guidelines for developing LD MOF-based materials for high-performance AZBs are scarce. In this review, the recent progress of LD MOF-based materials for AZBs is critically examined. The typical synthesis methods and structural design strategies for improving the electrochemical performance of LD MOF-based materials for AZBs are first introduced. The recent noteworthy research achievements are systematically discussed and categorized based on their applications in different AZB components, including cathodes, anodes, separators, and electrolytes. Finally, the limitations are addressed and the future perspectives are outlined for LD MOFs and their derivatives in AZB applications. This review provides clear guidance for designing high-performance LD MOF-based materials for advanced AZBs.

2.
Small ; : e2307795, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38085109

RESUMO

Transition metal selenides (TMSs) have great potential as cathode materials for alkaline Zn batteries (AZBs) owing to their high theoretical capacity and metallic conductivity. However, achieving a high specific capacity remains a formidable challenge due to the low structural stability and sluggish reaction kinetics of single-phase TMS. Herein, a facile method for fabricating a robust CoSe2 @Ni3 Se4 @Ni(OH)2 superstructure nanoarray (CNSNA) as an AZB cathode is presented. The sophisticated design enables structural stability and abundant active surface sites for efficient charge storage. Furthermore, the redox mediator K3 [Fe(CN)6 ] is employed to expedite the reaction kinetics and introduce supplementary redox reactions, further enhancing the charge storage capability. Consequently, the CNSNA electrode delivers an exceptional specific capacitance (609.08 mAh g-1 at 1 A g-1 ), surpassing all previously reported selenide-based materials. High-rate capability (239.37 mAh g-1 at 20 A g-1 ) and long cycling stability have also been achieved. The comprehensive charge storage mechanism studies confirmed the structural integrity, kinetic improvement, and high reactivity of the CNSNA superstructure. Moreover, the corresponding AZB based on CNSNA demonstrates an extraordinarily high energy density of 516.58 Wh kg-1 . The work offers guidance in the construction of superstructure-based TMS electrode materials, paving the way for the development of high-performance AZBs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...