Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 108(1): 233, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38400957

RESUMO

Enzyme immobilized on magnetic nanomaterials is a promising biocatalyst with efficient recovery under applied magnets. In this study, a recombinant extracellular lipase from Aspergillus niger GZUF36 (PEXANL1) expressed in Pichia pastoris GS115 was immobilized on ionic liquid-modified magnetic nano ferric oxide (Fe3O4@SiO2@ILs) via electrostatic and hydrophobic interaction. The morphology, structure, and properties of Fe3O4@SiO2@ILs and immobilized PEXANL1 were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, x-ray diffraction, vibration sample magnetometer, and zeta potential analysis. Under optimized conditions, the immobilization efficiency and activity recovery of immobilized PEXANL1 were 52 ± 2% and 122 ± 2%, respectively. The enzymatic properties of immobilized PEXANL1 were also investigated. The results showed that immobilized PEXANL1 achieved the maximum activity at pH 5.0 and 45 °C, and the lipolytic activity of immobilized PEXANL1 was more than twice that of PEXANL1. Compared to PEXANL1, immobilized PEXANL1 exhibited enhanced tolerance to temperature, metal ions, surfactants, and organic solvents. The operation stability experiments revealed that immobilized PEXANL1 maintained 86 ± 3% of its activity after 6 reaction cycles. The enhanced catalytic performance in enzyme immobilization on Fe3O4@SiO2@ILs made nanobiocatalysts a compelling choice for bio-industrial applications. Furthermore, Fe3O4@SiO2@ILs could also benefit various industrial enzymes and their practical uses. KEY POINTS: • Immobilized PEXANL1 was confirmed by SEM, FT-IR, and XRD. • The specific activity of immobilized PEXANL1 was more than twice that of PEXANL1. • Immobilized PEXANL1 had improved properties with good operational stability.


Assuntos
Líquidos Iônicos , Estabilidade Enzimática , Líquidos Iônicos/química , Aspergillus niger/genética , Aspergillus niger/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Dióxido de Silício/química , Lipase/metabolismo
2.
Int J Biol Macromol ; 245: 125533, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37355062

RESUMO

Recombinant INANE1 (rINANE1), a recombinant intracellular GDSL-type esterase from Aspergillus niger GZUF36, has high acetate substrate specificity. Here, rINANE1 was successfully immobilized on polydopamine (PDA)-modified magnetic ferric oxide nanoparticles (Fe3O4NPs) by adsorption-precipitation-cross-linking to obtain cross-linked enzyme aggregate (CLEA)-rINANE1-Fe3O4@PDA. Fe3O4, Fe3O4@PDA, and CLEA-rINANE1-Fe3O4@PDA were characterized by scanning electron microscopy, X-ray diffraction, vibrating-sample magnetometry, Fourier transform infrared (FTIR) spectroscopy, and zeta potential analysis. Upon immobilization, CLEA-rINANE1-Fe3O4@PDA, with a protein loading of 72.72 ± 1.01 mg/g, reached optimal activity recovery of 104.40 % ± 1.14 %. FTIR analysis showed that immobilization increased the relative content of ß-folding in rINANE1 by 12.25 % and reduced irregular curl by 4.16 %, rendering the structure more orderly. Specifically, under an alkaline condition (pH 10), CLEA-rINANE1-Fe3O4@PDA performed over 100 % of initial activity. The optimum temperature increased by 5 °C, and over 55 % of the initial activity was observed after 12 h at 55 °C. CLEA-rINANE1-Fe3O4@PDA showed over 40 % of its relative activity, whereas free rINANE1 showed <10 % in acetonitrile. In addition, the relative activity of CLEA-rINANE1-Fe3O4@PDA was retained at about 80 % after eight cycles and maintained at 109 % after 45 days. The PDA-modified magnetic ferrite nanoparticles exhibited excellent stability and recyclability, providing a new avenue for developing industrial biocatalysts.


Assuntos
Enzimas Imobilizadas , Nanopartículas de Magnetita , Enzimas Imobilizadas/química , Estabilidade Enzimática , Esterases/metabolismo , Aspergillus niger/metabolismo , Adsorção , Fenômenos Magnéticos , Concentração de Íons de Hidrogênio , Temperatura , Nanopartículas de Magnetita/química
3.
Foods ; 11(19)2022 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-36230139

RESUMO

Lactobacilli have been widely concerned for decades. Bacteria of the genus Lactobacillus have been commonly employed in fermented food to improve the appearance, smell, and taste of food or prolong its shelf-life. They comprise 261 species (by March 2020) that are highly diverse at the phenotypic, ecological, and genotypic levels. Some Lactobacilli strains have been documented to be essential probiotics, which are defined as a group of living microorganisms that are beneficial to the health of the host when ingested in sufficiency. However, the characterization, high-density fermentation, and the production of a directed vat set (DVS) starter of Lactobacilli strains used in the food industry have not been systematically reported. This paper mainly focuses on reviewing Lactobacilli as functional starter cultures in the food industry, including different molecular techniques for identification at the species and strain levels, methods for evaluating Lactobacilli properties, enhancing their performance and improving the cell density of Lactobacilli, and the production techniques of DVS starter of Lactobacilli strains. Moreover, this review further discussed the existing problems and future development prospects of Lactobacilli in the food industry. The viability and stability of Lactobacilli in the food industry and gastrointestinal environment are critical challenges at the industrial scale. The new production equipment and technology of DVS starter of Lactobacilli strains will have the potential for large-scale application, for example, developing low-temperature spray drying, freezing granulation drying, and spray freeze-drying.

4.
Front Microbiol ; 12: 633489, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33776965

RESUMO

In this study, a sn-1, 3 extracellular lipases from Aspergillus niger GZUF36 (PEXANL1) was expressed in Pichia pastoris, characterized, and the predicted structural model was analyzed. The optimized culture conditions of P. pastoris showed that the highest lipase activity of 66.5 ± 1.4 U/mL (P < 0.05) could be attained with 1% methanol and 96 h induction time. The purified PEXANL1 exhibited the highest activity at pH 4.0 and 40°C temperature, and its original activity remained unaltered in the majority of the organic solvents (20% v/v concentration). Triton X-100, Tween 20, Tween 80, and SDS at a concentration of 0.01% (w/v) enhanced, and all the metal ions tested inhibited activity of purified PEXANL. The results of ultrasound-assisted PEXANL1 catalyzed synthesis of 1,3-diaglycerides showed that the content of 1,3-diglycerides was rapidly increased to 36.90% with 25 min of ultrasound duration (P < 0.05) and later decreased to 19.93% with 35 min of ultrasound duration. The modeled structure of PEXANL1 by comparative modeling showed α/ß hydrolase fold. Structural superposition and molecular docking results validated that Ser162, His274, and Asp217 residues of PEXANL1 were involved in the catalysis. Small-angle X-ray scattering analysis indicated the monomer properties of PEXANL1 in solution. The ab initio model of PEXANL1 overlapped with its modeling structure. This work presents a reliable structural model of A. niger lipase based on homology modeling and small-angle X-ray scattering. Besides, the data from this study will benefit the rational design of suitable crystalline lipase variants in the future.

5.
Appl Microbiol Biotechnol ; 105(5): 1925-1941, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33559718

RESUMO

The sn-1,3 extracellular lipase from Aspergillus niger GZUF36 (EXANL1) has important potential applications. The cross-linked enzyme aggregate (CLEA) of purified EXANL1 (CLEA-EXANL1) achieved optimum activity recovery (148.5 ± 0.9%), immobilization yield (100 ± 0%), and recovered activity (99.7 ± 0.6%) with 80% tert-butanol as the precipitant, glutaraldehyde (GA) concentration of 30 mM, GA treatment time of 1.5 h, and centrifugal speed of 6000×g. The effect of CLEA strategy on the characterization of EXANL1 was evaluated in this work. CLEA-EXANL1 exhibited a broader optimum pH range (4-6) compared with free EXANL1 (6.5). CLEA-EXANL1 presented optimum activity at 40 °C, which was 5 °C higher than that of free EXANL1. CLEA strategy decreased the maximum reaction rate and increased the Michaelis-Menten constant of EXANL1 when olive oil emulsion was used as a substrate. Moreover, after 30 days, free EXANL1 lost more than 80.0% of its activity, whereas CLEA-EXANL1 retained more than 90.0% of its activity. CLEA strategy improved the tolerance of EXANL1 in polar organic solvents. Fourier transform infrared spectroscopy results showed that the CLEA technique increased the contents of ß-sheets and ß-turns in EXANL1 and reduced those of α-helixes and irregular crimps. CLEA strategy caused no change in the sn-1,3 selectivity of EXANL1. Therefore, EXANL1 in the form of CLEA is a valuable catalyst in the synthesis of 1,3-diacylglycerol. KEY POINTS: • Cross-linked enzyme aggregate (CLEA) strategy broadened the optimum pH range of sn-1,3 extracellular lipase from Aspergillus niger GZUF36 (EXANL1). • CLEA strategy improved the tolerance of EXANL1 in polar organic solvents. • CLEA strategy caused no change in the positional selectivity of EXANL1.


Assuntos
Aspergillus niger , Lipase , Aspergillus niger/metabolismo , Estabilidade Enzimática , Enzimas Imobilizadas/metabolismo , Glutaral , Concentração de Íons de Hidrogênio , Lipase/metabolismo , Temperatura
6.
Int J Biol Macromol ; 177: 601-609, 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33636270

RESUMO

Fermented bean foods are a crucial source of fibrinolytic enzymes. The presented study aimed to purify, characterize, and chemically modify Bacillus velezensis SN-14 fibrinolytic enzyme. The fibrinolytic enzyme was purified using CTAB/isooctane/hexyl alcohol/n-butyl alcohol reverse micellar system, and the purified enzyme was chemically modified to improve its enzymatic activity and stability. Enzyme activity recovery and the purification fold for this enzyme were 44.5 ± 1.9% and 4.93 ± 0.05 fold, respectively. SDS-PAGE results showed that the molecular weight of the purified fibrinolytic enzyme was around 28 kDa. Besides, the optimum temperature and pH of the purified fibrinolytic enzyme were 37 °C and 8-9, respectively. Fe2+, mPEG5000, and pepsin were used for chemical modification and for improving the activity and stability of the purified enzyme. Thermal and acid-base stability of chemically modified enzymes increased significantly, whereas enzymatic activity increased by 7.3 times. After 30 d of frozen storage, the modified enzyme's activity was remarkably lower (33.2%) than the unmodified enzyme (60.6%). The current study on B. velezensis SN-14 fibrinolytic enzyme and chemical modification method using Fe2+, mPEG5000, and pepsin provide a reference for developing fibrinolytic drugs and foods.


Assuntos
Bacillus/enzimologia , Proteínas de Bactérias , Fibrinolíticos , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Estabilidade Enzimática , Fibrinolíticos/química , Fibrinolíticos/isolamento & purificação
7.
J Food Sci Technol ; 57(7): 2669-2680, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32549617

RESUMO

Sn-1,3 extracellular Aspergillus niger GZUF36 lipase (EXANL1) has wide application potential in the food industry. However, the A. niger strain has defects such as easy degradation and instability in the expression of sn-1,3 lipase. To obtain a stable expression of this lipase and its subsequent enzymatic properties, the gene encoding EXANL1 was cloned and expressed in Escherichia coli BL21 (DE3) cells using pET-28a as the expression vector. The temperature-induced conditions were optimized, and we successfully achieved its active expression in E. coli. These conditions significantly influenced the active expression of EXANL1 (P < 0.05), and the highest enzyme activity of the supernatant of lysis cells expressed at 20 °C was at 7.02 ± 0.05 U/mL. The expressed recombinant EXANL1 was purified using Ni-NTA, showing an estimated relative molecular mass of 35 kDa. The recombinant EXANL1 exhibited maximum activity at 35 °C and pH 4.0, with a wide acid pH range. Thin-layer chromatography analysis showed that the enzyme displayed sn-1,3 positional selectivity toward triolein. The recombinant EXANL1 could maintain its relative activities (> 80%) after 24 h of incubation at pH 3-10, suggesting its suitability for a wide range of industrial applications. After comparing these properties with those of the other A. niger lipases, we found that some key amino acids may play a decisive role in enzymology. This work laid a foundation for the stable expression of the EXANL1 gene and its potential industrial application.

8.
J Food Sci Technol ; 56(6): 2899-2908, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31205345

RESUMO

There are few reports on the feasibility of combined reverse micelle extraction and acetone precipitation to obtain electrophoretic pure enzymes. We aimed to purify a sn-1,3 extracellular lipase from a novel Aspergillus niger GZUF36 through this combination in this work. This lipase preliminarily purified by controlling the volume ratio (1:2.5) of crude enzyme solution and acetone. Then, we studied effects of different parameters on reverse micelle extraction. The suitable surfactant, pH, salt and cosolvent and extraction time for forward extraction were 125 mM cetyl trimethylammonium bromide (CTAB), 9.0, 0.075 M NaCl, 10% n-hexanol and 30 min, respectively. Under these conditions, the forward extraction rate reached 90.3% ± 3.2%. The suitable salt, pH, extraction time and short chain alcohol for backward extraction were consecutively 1.5 M KCl, 6.5, 60 min and 10% ethanol. Adding 10% ethanol shows a significant advantage of improvement the extraction rate. Under these optimal conditions, the total extraction rate and purification factor of lipase reached 76.8% and 10.14, respectively. SDS-PAGE showed that molecular weight of the pure protein was 42.7 kDa and TLC exhibited sn-1,3 selectivity of this lipase. LC-MS/MS analysis revealed that the lipase had 297 amino acid residues and was likely to glycosylate. Through the study of different parameters, it demonstrated that the new and simple combination of reverse micelle extraction using CTAB as surfactant and n-hexanol as cosolvent for forward extraction and adding ethanol for backward extraction and acetone precipitation is a promising method to get almost an electrophoretically pure sn-1,3 lipase.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...