Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Materials (Basel) ; 14(13)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209855

RESUMO

Composition-dependent interdiffusion coefficients are key parameters in many physical processes. However, finding such coefficients for a system with few components is challenging due to the underdetermination of the governing diffusion equations, the lack of data in practice, and the unknown parametric form of the interdiffusion coefficients. In this work, we propose InfPolyn, Infinite Polynomial, a novel statistical framework to characterize the component-dependent interdiffusion coefficients. Our model is a generalization of the commonly used polynomial fitting method with extended model capacity and flexibility and it is combined with the numerical inversion-based Boltzmann-Matano method for the interdiffusion coefficient estimations. We assess InfPolyn on ternary and quaternary systems with predefined polynomial, exponential, and sinusoidal interdiffusion coefficients. The experiments show that InfPolyn outperforms the competitors, the SOTA numerical inversion-based Boltzmann-Matano methods, with a large margin in terms of relative error (10× more accurate). Its performance is also consistent and stable, whereas the number of samples required remains small.

3.
Environ Sci Technol ; 55(1): 120-128, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33325230

RESUMO

Short-term exposure to fine particulate matter (PM2.5) pollution is linked to numerous adverse health effects. Pollution episodes, such as wildfires, can lead to substantial increases in PM2.5 levels. However, sparse regulatory measurements provide an incomplete understanding of pollution gradients. Here, we demonstrate an infrastructure that integrates community-based measurements from a network of low-cost PM2.5 sensors with rigorous calibration and a Gaussian process model to understand neighborhood-scale PM2.5 concentrations during three pollution episodes (July 4, 2018, fireworks; July 5 and 6, 2018, wildfire; Jan 3-7, 2019, persistent cold air pool, PCAP). The firework/wildfire events included 118 sensors in 84 locations, while the PCAP event included 218 sensors in 138 locations. The model results accurately predict reference measurements during the fireworks (n: 16, hourly root-mean-square error, RMSE, 12.3-21.5 µg/m3, n(normalized)RMSE: 14.9-24%), the wildfire (n: 46, RMSE: 2.6-4.0 µg/m3; nRMSE: 13.1-22.9%), and the PCAP (n: 96, RMSE: 4.9-5.7 µg/m3; nRMSE: 20.2-21.3%). They also revealed dramatic geospatial differences in PM2.5 concentrations that are not apparent when only considering government measurements or viewing the US Environmental Protection Agency's AirNow visualizations. Complementing the PM2.5 estimates and visualizations are highly resolved uncertainty maps. Together, these results illustrate the potential for low-cost sensor networks that combined with a data-fusion algorithm and appropriate calibration and training can dynamically and with improved accuracy estimate PM2.5 concentrations during pollution episodes. These highly resolved uncertainty estimates can provide a much-needed strategy to communicate uncertainty to end users.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Incêndios Florestais , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Monitoramento Ambiental , Material Particulado/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...