Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
J Neuroeng Rehabil ; 21(1): 91, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38812014

RESUMO

BACKGROUND: The most challenging aspect of rehabilitation is the repurposing of residual functional plasticity in stroke patients. To achieve this, numerous plasticity-based clinical rehabilitation programs have been developed. This study aimed to investigate the effects of motor imagery (MI)-based brain-computer interface (BCI) rehabilitation programs on upper extremity hand function in patients with chronic hemiplegia. DESIGN: A 2010 Consolidated Standards for Test Reports (CONSORT)-compliant randomized controlled trial. METHODS: Forty-six eligible stroke patients with upper limb motor dysfunction participated in the study, six of whom dropped out. The patients were randomly divided into a BCI group and a control group. The BCI group received BCI therapy and conventional rehabilitation therapy, while the control group received conventional rehabilitation only. The Fugl-Meyer Assessment of the Upper Extremity (FMA-UE) score was used as the primary outcome to evaluate upper extremity motor function. Additionally, functional magnetic resonance imaging (fMRI) scans were performed on all patients before and after treatment, in both the resting and task states. We measured the amplitude of low-frequency fluctuation (ALFF), regional homogeneity (ReHo), z conversion of ALFF (zALFF), and z conversion of ReHo (ReHo) in the resting state. The task state was divided into four tasks: left-hand grasping, right-hand grasping, imagining left-hand grasping, and imagining right-hand grasping. Finally, meaningful differences were assessed using correlation analysis of the clinical assessments and functional measures. RESULTS: A total of 40 patients completed the study, 20 in the BCI group and 20 in the control group. Task-related blood-oxygen-level-dependent (BOLD) analysis showed that when performing the motor grasping task with the affected hand, the BCI group exhibited significant activation in the ipsilateral middle cingulate gyrus, precuneus, inferior parietal gyrus, postcentral gyrus, middle frontal gyrus, superior temporal gyrus, and contralateral middle cingulate gyrus. When imagining a grasping task with the affected hand, the BCI group exhibited greater activation in the ipsilateral superior frontal gyrus (medial) and middle frontal gyrus after treatment. However, the activation of the contralateral superior frontal gyrus decreased in the BCI group relative to the control group. Resting-state fMRI revealed increased zALFF in multiple cerebral regions, including the contralateral precentral gyrus and calcarine and the ipsilateral middle occipital gyrus and cuneus, and decreased zALFF in the ipsilateral superior temporal gyrus in the BCI group relative to the control group. Increased zReHo in the ipsilateral cuneus and contralateral calcarine and decreased zReHo in the contralateral middle temporal gyrus, temporal pole, and superior temporal gyrus were observed post-intervention. According to the subsequent correlation analysis, the increase in the FMA-UE score showed a positive correlation with the mean zALFF of the contralateral precentral gyrus (r = 0.425, P < 0.05), the mean zReHo of the right cuneus (r = 0.399, P < 0.05). CONCLUSION: In conclusion, BCI therapy is effective and safe for arm rehabilitation after severe poststroke hemiparesis. The correlation of the zALFF of the contralateral precentral gyrus and the zReHo of the ipsilateral cuneus with motor improvements suggested that these values can be used as prognostic measures for BCI-based stroke rehabilitation. We found that motor function was related to visual and spatial processing, suggesting potential avenues for refining treatment strategies for stroke patients. TRIAL REGISTRATION: The trial is registered in the Chinese Clinical Trial Registry (number ChiCTR2000034848, registered July 21, 2020).


Assuntos
Interfaces Cérebro-Computador , Imagens, Psicoterapia , Imageamento por Ressonância Magnética , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Extremidade Superior , Humanos , Masculino , Reabilitação do Acidente Vascular Cerebral/métodos , Feminino , Pessoa de Meia-Idade , Extremidade Superior/fisiopatologia , Imagens, Psicoterapia/métodos , Acidente Vascular Cerebral/fisiopatologia , Acidente Vascular Cerebral/complicações , Idoso , Adulto , Imaginação/fisiologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/fisiopatologia
2.
Front Sports Act Living ; 6: 1393988, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38756186

RESUMO

Background: Long-term skill learning can lead to structure and function changes in the brain. Different sports can trigger neuroplasticity in distinct brain regions. Volleyball, as one of the most popular team sports, heavily relies on individual abilities such as perception and prediction for high-level athletes to excel. However, the specific brain mechanisms that contribute to the superior performance of volleyball athletes compared to non-athletes remain unclear. Method: We conducted a study involving the recruitment of ten female volleyball athletes and ten regular female college students, forming the athlete and novice groups, respectively. Comprehensive behavioral assessments, including Functional Movement Screen and audio-visual reaction time tests, were administered to both groups. Additionally, resting-state magnetic resonance imaging (MRI) data were acquired for both groups. Subsequently, we conducted in-depth analyses, focusing on the amplitude of low-frequency fluctuations (ALFF), regional homogeneity (ReHo), and functional connectivity (FC) in the brain for both the athlete and novice groups. Results: No significant differences were observed in the behavioral data between the two groups. However, the athlete group exhibited noteworthy enhancements in both the ALFF and ReHo within the visual cortex compared to the novice group. Moreover, the functional connectivity between the visual cortex and key brain regions, including the left primary sensory cortex, left supplementary motor cortex, right insula, left superior temporal gyrus, and left inferior parietal lobule, was notably stronger in the athlete group than in the novice group. Conclusion: This study has unveiled the remarkable impact of volleyball athletes on various brain functions related to vision, movement, and cognition. It indicates that volleyball, as a team-based competitive activity, fosters the advancement of visual, cognitive, and motor skills. These findings lend additional support to the early cultivation of sports talents and the comprehensive development of adolescents. Furthermore, they offer fresh perspectives on preventing and treating movement-related disorders. Trial registration: Registration number: ChiCTR2400079602. Date of Registration: January 8, 2024.

3.
Brain Behav ; 14(5): e3504, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38698583

RESUMO

BACKGROUND: Electroacupuncture (EA) has been shown to facilitate brain plasticity-related functional recovery following ischemic stroke. The functional magnetic resonance imaging technique can be used to determine the range and mode of brain activation. After stroke, EA has been shown to alter brain connectivity, whereas EA's effect on brain network topology properties remains unclear. An evaluation of EA's effects on global and nodal topological properties in rats with ischemia reperfusion was conducted in this study. METHODS AND RESULTS: There were three groups of adult male Sprague-Dawley rats: sham-operated group (sham group), middle cerebral artery occlusion/reperfusion (MCAO/R) group, and MCAO/R plus EA (MCAO/R + EA) group. The differences in global and nodal topological properties, including shortest path length, global efficiency, local efficiency, small-worldness index, betweenness centrality (BC), and degree centrality (DC) were estimated. Graphical network analyses revealed that, as compared with the sham group, the MCAO/R group demonstrated a decrease in BC value in the right ventral hippocampus and increased BC in the right substantia nigra, accompanied by increased DC in the left nucleus accumbens shell (AcbSh). The BC was increased in the right hippocampus ventral and decreased in the right substantia nigra after EA intervention, and MCAO/R + EA resulted in a decreased DC in left AcbSh compared to MCAO/R. CONCLUSION: The results of this study provide a potential basis for EA to promote cognitive and motor function recovery after ischemic stroke.


Assuntos
Eletroacupuntura , Infarto da Artéria Cerebral Média , Imageamento por Ressonância Magnética , Ratos Sprague-Dawley , Traumatismo por Reperfusão , Animais , Eletroacupuntura/métodos , Masculino , Ratos , Traumatismo por Reperfusão/fisiopatologia , Traumatismo por Reperfusão/terapia , Traumatismo por Reperfusão/diagnóstico por imagem , Infarto da Artéria Cerebral Média/terapia , Infarto da Artéria Cerebral Média/fisiopatologia , Infarto da Artéria Cerebral Média/diagnóstico por imagem , Encéfalo/fisiopatologia , Encéfalo/diagnóstico por imagem , Isquemia Encefálica/terapia , Isquemia Encefálica/fisiopatologia , Isquemia Encefálica/diagnóstico por imagem , Modelos Animais de Doenças , Rede Nervosa/fisiopatologia , Rede Nervosa/diagnóstico por imagem , AVC Isquêmico/terapia , AVC Isquêmico/fisiopatologia , AVC Isquêmico/diagnóstico por imagem , Hipocampo/diagnóstico por imagem , Hipocampo/fisiopatologia
4.
Artigo em Inglês | MEDLINE | ID: mdl-38503484

RESUMO

BACKGROUND: This study aimed to investigate the efficacy of circuits-based paired associative stimulation (PAS) in adults with amnestic mild cognitive impairment (aMCI). METHODS: We conducted a parallel-group, randomised, controlled clinical trial. Initially, a cohort of healthy subjects was recruited to establish the cortical-hippocampal circuits by tracking white matter fibre connections using diffusion tensor imaging. Subsequently, patients diagnosed with aMCI, matched for age and education, were randomly allocated in a 1:1 ratio to undergo a 2-week intervention, either circuit-based PAS or sham PAS. Additionally, we explored the relationship between changes in cognitive performance and the functional connectivity (FC) of cortical-hippocampal circuits. RESULTS: FCs between hippocampus and precuneus and between hippocampus and superior frontal gyrus (orbital part) were most closely associated with the Auditory Verbal Learning Test (AVLT)_N5 score in 42 aMCI patients, thus designated as target circuits. The AVLT_N5 score improved from 2.43 (1.43) to 5.29 (1.98) in the circuit-based PAS group, compared with 2.52 (1.44) to 3.86 (2.39) in the sham PAS group (p=0.003; Cohen's d=0.97). A significant decrease was noted in FC between the left hippocampus and left precuneus in the circuit-based PAS group from baseline to postintervention (p=0.013). Using a generalised linear model, significant group×FC interaction effects for the improvements in AVLT_N5 scores were found within the circuit-based PAS group (B=3.4, p=0.017). CONCLUSIONS: Circuit-based PAS effectively enhances long-term delayed recall in adults diagnosed with aMCI, which includes individuals aged 50-80 years. This enhancement is potentially linked to the decreased functional connectivity between the left hippocampus and left precuneus. TRIAL REGISTRATION NUMBER: ChiCTR2100053315; Chinese Clinical Trial Registry.

5.
Neurosci Lett ; 820: 137580, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38072028

RESUMO

Knee osteoarthritis (KOA) is characterized by debilitating pain. Electroacupuncture (EA), a traditional Chinese medical therapy, has shown promise in KOA pain management. This study investigated the therapeutic potential of EA in KOA and its impact on limbic system neural plasticity. Sixteen rats were randomly assigned into two groups: EA group and sham-EA group. EA or sham-EA interventions were administered at acupoints ST32 (Futu) and ST36 (Zusanli) for three weeks. Post-intervention resting-state fMRI was scanned, assessing parameters including Amplitude of low frequency fluctuations (ALFF), regional homogeneity (ReHo), functional connectivity (FC) and nodal characterizations of network within limbic system. The results showed that EA was strategically directed towards the limbic system, resulting in discernible alterations in neural activity, FC, and network characteristics. Our findings demonstrate that EA had a significant impact on the limbic system neural plasticity in rats with KOA, presenting a novel nonpharmacological approach for KOA treatment.


Assuntos
Eletroacupuntura , Osteoartrite do Joelho , Ratos , Animais , Eletroacupuntura/métodos , Osteoartrite do Joelho/terapia , Dor , Manejo da Dor , Sistema Límbico
6.
BMC Neurosci ; 24(1): 63, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057703

RESUMO

BACKGROUND: Ischemic stroke is a serious disease leading to significant disability in humans worldwide. Increasing evidence suggests that some microRNAs (miRNAs) participate in the pathophysiology of ischemic stroke. A key role for MiR-212 has been found in neuronal function and synaptic plasticity. Ischemic stroke can be effectively treated with electroacupuncture (EA); however, there is a lack of understanding of the relevant mechanisms. In this study, we employed behavioral test and resting-state functional magnetic resonance imaging (rs-fMRI) to detect behavioral and brain function alterations in rats suffering from ischemic stroke. The efficacy of EA therapy and miR-212-5p's role in this process were also evaluated. METHODS AND RESULTS: Forty rats were randomly divided into the following groups: Sham, middle cerebral artery occlusion/reperfusion (MCAO/R), MCAO/R + EA, MCAO/R + EA + antagomir-negative control and MCAO/R + EA + antagomir-212-5p groups. Behavioral changes were assessed by Catwalk gait analysis prior to and after modeling. Rs-fMRI was performed at one week after EA treatment, amplitude of low-frequency fluctuations (ALFF) and regional homogeneity (ReHo) were calculated to reveal neural activity. Furthermore, neuronal apoptosis in the ischemic penumbra was analyzed using a TUNEL assay. Treatment with EA significantly improved the performance of rats in the behavioral test. The motor and cognition-related brain regions showed decreased ALFF and ReHo following focal cerebral ischemia-reperfusion, and EA treatment could reactivate these brain regions. Moreover, EA treatment significantly decreased MCAO/R-induced cell death. However, the transfection of antagomir-212-5p attenuated the therapeutic effect of EA. CONCLUSIONS: In conclusion, the results suggested that EA improved the behavioral and imaging outcomes of ischemic stroke through miR-212-5p.


Assuntos
Isquemia Encefálica , Eletroacupuntura , AVC Isquêmico , MicroRNAs , Traumatismo por Reperfusão , Acidente Vascular Cerebral , Humanos , Ratos , Animais , Ratos Sprague-Dawley , Eletroacupuntura/métodos , Antagomirs , Isquemia Encefálica/diagnóstico por imagem , Isquemia Encefálica/terapia , Isquemia Encefálica/metabolismo , Infarto da Artéria Cerebral Média/diagnóstico por imagem , Infarto da Artéria Cerebral Média/terapia , MicroRNAs/metabolismo , Traumatismo por Reperfusão/terapia , Traumatismo por Reperfusão/metabolismo , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/terapia , Acidente Vascular Cerebral/metabolismo
7.
Biol Res ; 56(1): 52, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37789455

RESUMO

BACKGROUND: Ischemic stroke is a severe type of stroke with high disability and mortality rates. In recent years, microglial exosome-derived miRNAs have been shown to be promising candidates for the treatment of ischemic brain injury and exert neuroprotective effects. Mechanisms underlying miRNA dysregulation in ischemic stroke are still being explored. Here, we aimed to verify whether miRNAs derived from exosomes exert effects on functional recovery. METHODS: MiR-212-5p agomir was employed to upregulate miR-212-5p expression in a rat model of middle cerebral artery occlusion/reperfusion (MCAO/R) as well as an oxygen-glucose deprivation/reoxygenation (OGD/R) in vitro. Western blot analysis, qRT-PCR and immunofluorescence staining and other methods were applied to explore the underlying mechanisms of action of miR-212-5p. RESULTS: The results of our study found that intervention with miR-212-5p agomir effectively decreased infarct volume and restored motor function in MCAO/R rats. Mechanistically, miR-212-5p agomir significantly reduced the expression of PlexinA2 (PLXNA2). Additionally, the results obtained in vitro were similar to those achieved in vivo. CONCLUSION: In conclusion, the present study indicated that PLXNA2 may be a target gene of miR-212-5p, and miR-212-5p has great potential as a target for the treatment and diagnosis of ischemic stroke.


Assuntos
AVC Isquêmico , MicroRNAs , Traumatismo por Reperfusão , Ratos , Animais , MicroRNAs/genética , Microglia , AVC Isquêmico/genética , AVC Isquêmico/metabolismo , Neuroproteção , Traumatismo por Reperfusão/genética , Infarto da Artéria Cerebral Média/genética , Infarto da Artéria Cerebral Média/metabolismo , Apoptose
8.
Eur J Neurosci ; 58(5): 3347-3361, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37489657

RESUMO

The present study aimed to investigate poststroke morphological alterations contralesionally and correlations with functional outcomes. Structural magnetic resonance images were obtained from 27 poststroke patients (24 males, 50.21 ± 10.97 years) and 20 healthy controls (13 males, 46.63 ± 12.18 years). Voxel-based and surface-based morphometry analysis were conducted to detect alterations of contralesional grey matter volume (GMV), cortical thickness (CT), gyrification index (GI), sulcus depth (SD), and fractal dimension (FD) in poststroke patients. Partial correlation analysis was used to explore the relationship between regions with significant structural differences and scores of clinical assessments, including Modified Barthel Index (MBI), Berg Balance Scale (BBS), Fugl-Meyer Assessment of Upper Extremity (FMA-UE), Mini-Mental State Examination (MMSE), and Montreal Cognitive Assessment (MoCA). Correction for multiplicity was conducted within each parameter and for all tests. GMV significantly decreased in the contralesional motor-related, occipital and temporal cortex, limbic system, and cerebellum lobe (P < 0.01, family-wise error [FWE] correction). Lower CT was found in the contralesional precentral and lingual gyrus (P < 0.01, FWE correction), while lower GI found in the contralesional superior temporal gyrus and insula (P < 0.01, FWE correction). There were significant correlations between GMV of contralesional lingual gyrus and MBI (P = 0.031, r = 0.441), and BBS (P = 0.047, r = 0.409) scores, and GMV of contralesional hippocampus and FMA-UE scores (P = 0.048, r = 0.408). In conclusion, stroke patients exhibited wide grey matter loss and cortical morphological changes in the contralesional hemisphere, which correlated with sensorimotor functions and the ability of daily living.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Masculino , Humanos , Substância Cinzenta , Reabilitação do Acidente Vascular Cerebral/métodos , Extremidade Superior , Imageamento por Ressonância Magnética
9.
Front Neurol ; 14: 1135466, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37346164

RESUMO

Background: Brain-computer interface (BCI) has been widely used for functional recovery after stroke. Understanding the brain mechanisms following BCI intervention to optimize BCI strategies is crucial for the benefit of stroke patients. Methods: Forty-six patients with upper limb motor dysfunction after stroke were recruited and randomly divided into the control group or the BCI group. The primary outcome was measured by the assessment of Fugl-Meyer Assessment of Upper Extremity (FMA-UE). Meanwhile, we performed resting-state functional magnetic resonance imaging (rs-fMRI) in all patients, followed by independent component analysis (ICA) to identify functionally connected brain networks. Finally, we assessed the topological efficiency of both groups using graph-theoretic analysis in these brain subnetworks. Results: The FMA-UE score of the BCI group was significantly higher than that of the control group after treatment (p = 0.035). From the network topology analysis, we first identified seven subnetworks from the rs-fMRI data. In the following analysis of subnetwork properties, small-world properties including γ (p = 0.035) and σ (p = 0.031) within the visual network (VN) decreased in the BCI group. For the analysis of the dorsal attention network (DAN), significant differences were found in assortativity (p = 0.045) between the groups. Additionally, the improvement in FMA-UE was positively correlated with the assortativity of the dorsal attention network (R = 0.498, p = 0.011). Conclusion: Brain-computer interface can promote the recovery of upper limbs after stroke by regulating VN and DAN. The correlation trend of weak intensity proves that functional recovery in stroke patients is likely to be related to the brain's visuospatial processing ability, which can be used to optimize BCI strategies. Clinical Trial Registration: The trial is registered in the Chinese Clinical Trial Registry, number ChiCTR2000034848. Registered 21 July 2020.

10.
J Pain Res ; 16: 1595-1605, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37220632

RESUMO

Introduction: Osteoarthritis is a chronic, ongoing disease that affects patients, and pain is considered a key factor affecting patients, but the brain changes during the development of osteoarthritis pain are currently unclear. In this study, we used electroacupuncture (EA) to intervene the rat model of knee osteoarthritis and analyzed the changes in topological properties of brain networks using graph theory. Methods: Sixteen SD rat models of right-knee osteoarthritis with anterior cruciate ligament transection (ACLT) were randomly divided into electroacupuncture intervention group and control group. The electroacupuncture group was intervened on Zusanli (ST36) and Futu (ST32) for 20 min each time, five times a week for 3 weeks, while the control group was applied sham stimulation. Both groups were measured for pain threshold. The small-world properties and node properties of the brain network between the two groups after the intervention were statistically analyzed by graph theory methods. Results: The differences are mainly in the changes in node attributes between the two groups, such as degree centrality, betweenness centrality, and so on in different brain regions (P<0.05). Both groups showed no small-world characteristics in the brain networks of the two groups. The mechanical thresholds and thermal pain thresholds were significantly higher in the EA group than in the control group (P<0.05). Conclusion: The study demonstrated that electroacupuncture intervention enhanced the activity of nodes related to pain circuit and relieved pain in osteoarthritis, which provides a complementary basis for explaining the effect of electroacupuncture intervention on pain through graphical analysis of changes in brain network topological properties and helps to develop an imaging model for pain affected by electroacupuncture.

11.
Front Neurosci ; 17: 1081515, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37113153

RESUMO

Objective: Aging has great influence on the clinical treatment effect of cerebrovascular diseases, and evidence suggests that the effect may be associated with age-related brain plasticity. Electroacupuncture is an effective alternative treatment for traumatic brain injury (TBI). In the present study, we aimed to explore the effect of aging on the cerebral metabolic mechanism of electroacupuncture to provide new evidence for developing age-specific rehabilitation strategies. Methods: Both aged (18 months) and young (8 weeks) rats with TBI were analyzed. Thirty-two aged rats were randomly divided into four groups: aged model, aged electroacupuncture, aged sham electroacupuncture, and aged control group. Similarly, 32 young rats were also divided into four groups: young model, young electroacupuncture, young sham electroacupuncture, and young control group. Electroacupuncture was applied to "Bai hui" (GV20) and "Qu chi" (LI11) for 8 weeks. CatWalk gait analysis was then performed at 3 days pre- and post-TBI, and at 1, 2, 4, and 8 weeks after intervention to observe motor function recovery. Positron emission computed tomography (PET/CT) was performed at 3 days pre- and post-TBI, and at 2, 4, and 8 weeks after intervention to detect cerebral metabolism. Results: Gait analysis showed that electroacupuncture improved the forepaw mean intensity in aged rats after 8 weeks of intervention, but after 4 weeks of intervention in young rats. PET/CT revealed increased metabolism in the left (the injured ipsilateral hemisphere) sensorimotor brain areas of aged rats during the electroacupuncture intervention, and increased metabolism in the right (contralateral to injury hemisphere) sensorimotor brain areas of young rats. Results: This study demonstrated that aged rats required a longer electroacupuncture intervention duration to improve motor function than that of young rats. The influence of aging on the cerebral metabolism of electroacupuncture treatment was mainly focused on a particular hemisphere.

12.
BMC Neurol ; 23(1): 176, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37118658

RESUMO

INTRODUCTION: Brain has a spontaneous recovery after stroke, reflecting the plasticity of the brain. Currently, TMS is used for studies of single-target brain region modulation, which lacks consideration of brain networks and functional connectivity. Cortico-cortical paired associative stimulation (ccPAS) promotes recovery of motor function. Multisensory effects in primary visual cortex(V1) directly influence behavior and perception, which facilitate motor functional recovery in stroke patients. Therefore, in this study, dual-targeted precise stimulation of V1 and primary motor cortex(M1) on the affected hemisphere of stroke patients will be used for cortical visuomotor multisensory integration to improve motor function. METHOD: This study is a randomized, double-blind controlled clinical trial over a 14-week period. 69 stroke subjects will be enrolled and divided into sham stimulation group, ccPAS low frequency group, and ccPAS high frequency group. All groups will receive conventional rehabilitation. The intervention lasted for two weeks, five times a week. Assessments will be performed before the intervention, at the end of the intervention, and followed up at 6 and 14 weeks. The primary assessment indicator is the 'Fugl-Meyer Assessment of the Upper Extremity ', secondary outcomes were 'The line bisection test', 'Modified Taylor Complex Figure', 'NIHSS' and neuroimaging assessments. All adverse events will be recorded. DISCUSSION: Currently, ccPAS is used for the modulation of neural circuits. Based on spike-timing dependent plasticity theory, we can precisely intervene in the connections between different cortices to promote the recovery of functional connectivity on damaged brain networks after stroke. We hope to achieve the modulation of cortical visuomotor interaction by combining ccPAS with the concept of multisensory integration. We will further analyze the correlation between analyzing visual and motor circuits and explore the alteration of neuroplasticity by the interactions between different brain networks. This study will provide us with a new clinical treatment strategy to achieve precise rehabilitation for patient with motor dysfunction after stroke. TRIAL REGISTRATION: This trial was registered in the Chinese Clinical Trial Registry with code ChiCTR2300067422 and was approved on January 16, 2023.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Reabilitação do Acidente Vascular Cerebral/métodos , Estimulação Magnética Transcraniana/métodos , Acidente Vascular Cerebral/complicações , Encéfalo , Extremidade Superior , Recuperação de Função Fisiológica , Resultado do Tratamento , Ensaios Clínicos Controlados Aleatórios como Assunto
13.
Alzheimers Res Ther ; 15(1): 61, 2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-36964589

RESUMO

BACKGROUND: Connectome mapping may reveal new treatment targets for patients with neurological and psychiatric diseases. However, the long-term delayed recall based-network with structural and functional connectome is still largely unknown. Our objectives were to (1) identify the long-term delayed recall-based cortex-hippocampus network with structural and functional connectome and (2) investigate its relationships with various cognitive functions, age, and activities of daily living. METHODS: This case-control study enrolled 131 subjects (73 amnestic mild cognitive impairment [aMCI] patients and 58 age- and education-matched healthy controls [HCs]). All subjects completed a neuropsychological battery, activities of daily living assessment, and multimodal magnetic resonance imaging. Nodes of the cortical-hippocampal network related to long-term delayed recall were identified by probabilistic fiber tracking and functional connectivity (FC) analysis. Then, the main and interaction effects of the network on cognitive functions were assessed by a generalized linear model. Finally, the moderating effects of the network on the relationships between long-term delayed recall and clinical features were analyzed by multiple regression and Hayes' bootstrap method. All the effects of cortex-hippocampus network were analyzed at the connectivity and network levels. RESULTS: The result of a generalized linear model showed that the bilateral hippocampus, left dorsolateral superior frontal gyrus, right supplementary motor area, left lingual gyrus, left superior occipital gyrus, left superior parietal gyrus, left precuneus, and right temporal pole (superior temporal gyrus) are the left and right cortex-hippocampus network nodes related to long-term delayed recall (P < 0.05). Significant interaction effects were found between the Auditory Verbal Learning Test Part 5 (AVLT 5) scores and global properties of the left cortex-hippocampus network [hierarchy, clustering coefficient, characteristic path length, global efficiency, local efficiency, Sigma and synchronization (P < 0.05 Bonferroni corrected)]. Significant interaction effects were found between the general cognitive function/executive function/language and global properties of the left cortex-hippocampus network [Sigma and synchronization (P < 0.05 Bonferroni corrected)]. CONCLUSION: This study introduces a novel symptom-based network and describes relationships among cognitive functions, brain function, and age. The cortex-hippocampus network constrained by the structural and functional connectome is closely related to long-term delayed recall.


Assuntos
Conectoma , Humanos , Atividades Cotidianas , Estudos de Casos e Controles , Imageamento por Ressonância Magnética/métodos , Hipocampo , Encéfalo/diagnóstico por imagem
14.
Neurosurgery ; 93(1): 233-243, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-36735283

RESUMO

BACKGROUND: Function recovery is related to cortical plasticity. The brain remodeling patterns induced by alterations in peripheral nerve pathways with different nerve reconstructions are unknown. OBJECTIVE: To explore brain remodeling patterns related to alterations in peripheral neural pathways after different nerve reconstruction surgeries. METHODS: Twenty-four female Sprague-Dawley rats underwent complete left brachial plexus nerve transection, together with the following interventions: no nerve repair (n = 8), grafted nerve repair (n = 8), and phrenic nerve transfer (n = 8). Resting-state functional MR images of brain were acquired at the end of seventh month postsurgery. Amplitude of low-frequency fluctuation (ALFF), regional homogeneity (ReHo), and functional connectivity (FC) were compared among 3 groups. Behavioral observation and electromyography assessed nerve regeneration. RESULTS: Compared with brachial plexus injury group, ALFF and ReHo of left entorhinal cortex decreased in nerve repair and nerve transfer groups. The nerve transfer group showed increased ALFF and ReHo than nerve repair group in left caudate putamen, right accumbens nucleus shell (AcbSh), and right somatosensory cortex. The FC between right somatosensory cortex and bilateral piriform cortices and bilateral somatosensory cortices increased in nerve repair group than brachial plexus injury and nerve transfer groups. The nerve transfer group showed increased FC between right somatosensory cortex and areas including left corpus callosum, left retrosplenial cortex, right parietal association cortex, and right dorsolateral thalamus than nerve repair group. CONCLUSION: Entorhinal cortex is a key brain area in recovery of limb function after nerve reconstruction. Nerve transfer related brain remodeling mainly involved contralateral sensorimotor areas, facilitating directional "shifting" of motor representation.


Assuntos
Plexo Braquial , Encéfalo , Ratos , Feminino , Animais , Ratos Sprague-Dawley , Encéfalo/cirurgia , Plexo Braquial/cirurgia , Procedimentos Neurocirúrgicos/métodos , Mapeamento Encefálico/métodos , Vias Neurais , Imageamento por Ressonância Magnética/métodos
15.
Dysphagia ; 38(1): 268-277, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35760876

RESUMO

The object of this study is to investigate dysphagia caused by reduced laryngeal elevation in patients poststroke. The central mechanism of laryngeal elevation during swallowing was explored by comparing the brain activation area before and after treatment with that of healthy subjects. The treatment group included patients diagnosed with dysphagia poststroke that showed reduced laryngeal elevation. They were treated with electrical stimulation at the motor points of the muscles related to laryngeal elevation. Functional magnetic resonance imaging (fMRI) using the blood oxygenation level-dependent (BOLD) was used to observe brain activation of the normal healthy control group and treatment group during voluntary swallowing. Independent sample t test and paired sample t test were used to analyze the differences in brain activation between and within the groups. Compared with the control group, no activation was observed in the brainstem and putamen regions of the experimental group before treatment. Statistics showed that the experimental group had a wider range of brain activation than the control group pretreatment, including the left supplementary motor area, the cingulate gyrus, the inferior frontal gyrus, the right thalamus, and the right putamen. After the electrical stimulation, the brain stem subregion, the left cerebellar lobule IV and V, and parts of the cerebral cortex were more active, while the left supplementary motor area, paracentral lobule, and occipital lobule were less active post-treatment. (1) The brainstem and putamen are the specific brain regions that control laryngeal movement. (2) The enhanced activation of the cortical-basal ganglia-thalamic circuit after stroke is a compensatory mechanism. (3) The improvement of hyoid bone elevation was related to the enhanced activation of the IV and V lobes of the cerebellar hemisphere. The over-activation of the supplementary motor area poststroke would subside once the motor function improved.


Assuntos
Transtornos de Deglutição , Imageamento por Ressonância Magnética , Humanos , Deglutição/fisiologia , Encéfalo/fisiologia , Mapeamento Encefálico
16.
Neural Regen Res ; 18(2): 410-415, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35900438

RESUMO

Modified constraint-induced movement therapy (mCIMT) has shown beneficial effects on motor function improvement after brain injury, but the exact mechanism remains unclear. In this study, amplitude of low frequency fluctuation (ALFF) metrics measured by resting-state functional magnetic resonance imaging was obtained to investigate the efficacy and mechanism of mCIMT in a control cortical impact (CCI) rat model simulating traumatic brain injury. At 3 days after control cortical impact model establishment, we found that the mean ALFF (mALFF) signals were decreased in the left motor cortex, somatosensory cortex, insula cortex and the right motor cortex, and were increased in the right corpus callosum. After 3 weeks of an 8-hour daily mCIMT treatment, the mALFF values were significantly increased in the bilateral hemispheres compared with those at 3 days postoperatively. The mALFF signal values of left corpus callosum, left somatosensory cortex, right medial prefrontal cortex, right motor cortex, left postero dorsal hippocampus, left motor cortex, right corpus callosum, and right somatosensory cortex were increased in the mCIMT group compared with the control cortical impact group. Finally, we identified brain regions with significantly decreased mALFF values at 3 days postoperatively. Pearson correlation coefficients with the right forelimb sliding score indicated that the improvement in motor function of the affected upper limb was associated with an increase in mALFF values in these brain regions. Our findings suggest that functional cortical plasticity changes after brain injury, and that mCIMT is an effective method to improve affected upper limb motor function by promoting bilateral hemispheric cortical remodeling. mALFF values correlate with behavioral changes and can potentially be used as biomarkers to assess dynamic cortical plasticity after traumatic brain injury.

17.
Obesity (Silver Spring) ; 30(11): 2213-2221, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36321272

RESUMO

OBJECTIVE: This study explored the relationship between BMI and regional cerebral glucose metabolism and explicitly detected regions with significant differences in cerebral metabolism using positron emission tomography (PET)/magnetic resonance imaging in the resting state. METHODS: Corresponding PET images acquired from 220 participants were sorted into four groups according to Asian BMI standards: underweight, normal weight, overweight, and obesity. Pearson correlation coefficient analysis was performed to assess the association between BMI and standard uptake value. The regional cerebral glucose metabolism was measured in the fasted state. The PET images were analyzed using statistical parameter maps. One-way ANOVA was used to explore differences in the standard uptake value as an indicator of regional cerebral glucose metabolism. RESULTS: This study found that lower cerebral glucose metabolism in reward- and motivation-related regions was accompanied by more severe obesity and that regional cerebral glucose metabolism activities were negatively correlated with BMI. In addition, more severe obesity was accompanied by a larger range of areas with significant differences independent of current dietary status. CONCLUSIONS: These findings suggest that the reward and motivation circuits may be a factor regulating energy balance and influencing the degree of obesity.


Assuntos
Obesidade Mórbida , Compostos Radiofarmacêuticos , Humanos , Compostos Radiofarmacêuticos/metabolismo , Motivação , Índice de Massa Corporal , Obesidade Mórbida/metabolismo , Glucose/metabolismo , Fluordesoxiglucose F18/metabolismo , Tomografia por Emissão de Pósitrons , Recompensa , Encéfalo/metabolismo
18.
Korean J Radiol ; 23(10): 986-997, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36098344

RESUMO

OBJECTIVE: Whether metabolic redistribution occurs in patients with white matter hyperintensities (WMHs) on magnetic resonance imaging (MRI) is unknown. This study aimed 1) to propose a measure of the brain metabolic network for an individual patient and preliminarily apply it to identify impaired metabolic networks in patients with WMHs, and 2) to explore the clinical and imaging features of metabolic redistribution in patients with WMHs. MATERIALS AND METHODS: This study included 50 patients with WMHs and 70 healthy controls (HCs) who underwent 18F-fluorodeoxyglucose-positron emission tomography/MRI. Various global property parameters according to graph theory and an individual parameter of brain metabolic network called "individual contribution index" were obtained. Parameter values were compared between the WMH and HC groups. The performance of the parameters in discriminating between the two groups was assessed using the area under the receiver operating characteristic curve (AUC). The correlation between the individual contribution index and Fazekas score was assessed, and the interaction between age and individual contribution index was determined. A generalized linear model was fitted with the individual contribution index as the dependent variable and the mean standardized uptake value (SUVmean) of nodes in the whole-brain network or seven classic functional networks as independent variables to determine their association. RESULTS: The means ± standard deviations of the individual contribution index were (0.697 ± 10.9) × 10-3 and (0.0967 ± 0.0545) × 10-3 in the WMH and HC groups, respectively (p < 0.001). The AUC of the individual contribution index was 0.864 (95% confidence interval, 0.785-0.943). A positive correlation was identified between the individual contribution index and the Fazekas scores in patients with WMHs (r = 0.57, p < 0.001). Age and individual contribution index demonstrated a significant interaction effect on the Fazekas score. A significant direct association was observed between the individual contribution index and the SUVmean of the limbic network (p < 0.001). CONCLUSION: The individual contribution index may demonstrate the redistribution of the brain metabolic network in patients with WMHs.


Assuntos
Fluordesoxiglucose F18 , Substância Branca , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Humanos , Imageamento por Ressonância Magnética/métodos , Redes e Vias Metabólicas , Substância Branca/diagnóstico por imagem , Substância Branca/patologia
19.
Neurosci Lett ; 789: 136866, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36075318

RESUMO

Neuropathic pain (NeuP) is shown to be associated with abnormal changes in several specific brain regions. However, the large-scale interactivity of neuronal networks underlying the sensory and emotional abnormalities during NeuP remains unexplored. The present study aimed to explore the alterations in the relevant functional resting-state networks (RSNs) and their intra-networks at the different stages of NeuP based on resting-state functional magnetic resonance imaging (rs-fMRI). A NeuP rat model was established by chronic constriction injury (CCI). Three RSNs were identified to be associated with the NeuP, including the default mode network (DMN), sensorimotor network (SMN), and interoceptive network (IN). The functional connectivity (FC) of the left caudate putamen (CPu) within the DMN and the right piriform cortex within the IN were significantly reduced at the early stage of NeuP, when the maximum allodynia was apparent early, which reflected the suppressed function of the DMN and IN. At 4 weeks post-CCI, when negative emotions were present, the FC of the right insular cortex in the SMN and left visual cortex in the IN were significantly elevated, representing the increased excitability of both SMN and IN. Our study revealed the characteristic functional organization at the network level induced by NeuP and emphasized the role of SMN, DMN, and IN in the pathological mechanisms of NeuP.


Assuntos
Mapeamento Encefálico , Neuralgia , Animais , Encéfalo , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Rede Nervosa , Ratos
20.
Front Hum Neurosci ; 16: 974393, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35982688

RESUMO

Post-stroke depression (PSD) is a serious complication of stroke that significantly restricts rehabilitation. The use of immersive virtual reality for stroke survivors is promising. Herein, we investigated the effects of a novel immersive virtual reality training system on PSD and explored induced effective connectivity alterations in emotional networks using multivariate Granger causality analysis (GCA). Forty-four patients with PSD were equally allocated into an immersive-virtual reality group and a control group. In addition to their usual rehabilitation treatments, the participants in the immersive-virtual reality group participated in an immersive-virtual reality rehabilitation program, while the patients in the control group received 2D virtual reality rehabilitation training. The Hamilton Depression Rating Scale, modified Barthel Index (MBI), and resting-state functional magnetic resonance imaging (rsfMRI) data were collected before and after a 4-week intervention. rsfMRI data were analyzed using multivariate GCA. We found that the immersive virtual reality training was more effective in improving depression in patients with PSD but had no statistically significant improvement in MBI scores compared to the control group. The GCA showed that the following causal connectivities were strengthened after immersive virtual reality training: from the amygdala, insula, middle temporal gyrus, and caudate nucleus to the dorsolateral prefrontal cortex; from the insula to the medial prefrontal cortex; and from the thalamus to the posterior superior temporal sulcus. These causal connectivities were weakened after treatment in the control group. Our results indicated the neurotherapeutic use of immersive virtual reality rehabilitation as an effective non-pharmacological intervention for PSD; the alteration of causal connectivity in emotional networks might constitute the neural mechanisms underlying immersive-virtual reality rehabilitation in PSD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...