Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Pharm ; 622: 121898, 2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35688287

RESUMO

Ferroptosis is a newly found promising cell death pathway, which bypasses apoptosis and overcomes multidrug resistance of tumor. In this study, acid and redox dual-responsive multifunctional magnetic nanoparticles loading with Sorafenib (Sor), namely FMMHG/Sor, were prepared for tumor ferroptosis therapy. Fe3O4 nanoparticles as the core provided sufficient iron ion for ferroptosis and magnetic targeting. Mesoporous organosilica nanoparticles (MON) was coated on the outside of Fe3O4 to form "core-shell" structure, which contained the disulfidebond with redox-responsive. MnO2 was dropped on the surface of MON as gatekeeper, which was decomposed at low pH into O2 to promote drug release. Glucose oxidase (GOD) catalyzed glucose to produce H2O2, which reacted with iron ion to generate hydroxylradical (OH•) vie Fenton reaction. OH• inhibited GPX4 expression to induce ferroptosis with Sor as a synergistic inducer. Hyaluronic acid (HA) protected nanoparticles from removed by immune system and actively targeted to tumor cells. Overall, pH and redox dual-responsive FMMHG/Sor is a promising antitumor nanomedicine with magnetic targeting and active targeting for efficient tumor ferroptosis therapy.


Assuntos
Ferroptose , Nanopartículas de Magnetita , Nanopartículas , Neoplasias , Linhagem Celular Tumoral , Humanos , Peróxido de Hidrogênio , Ferro , Nanopartículas de Magnetita/química , Compostos de Manganês , Nanopartículas/química , Neoplasias/tratamento farmacológico , Óxidos
2.
J Colloid Interface Sci ; 621: 12-23, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35447518

RESUMO

Ferroptosis is a newly found cell death mechanism, which could bypass apoptosis and reverse multidrug resistance of tumors. However, efficient induction of tumor ferroptosis remains a challenge. In this study, multifunctional "ball-rod" Janus nanoparticles (FTG/L&SMD) were constructed for non-small cell lung cancer (NSCLC) ferroptosis treatment. Protected by tannic acid (TA), FTG/L&SMD maintains long-term function in blood circulation, while modification by 2, 3-dimethylmaleic anhydride (DMMA) confers the FTG/L&SMD with pH-responsive charge reversal. Glucose oxidase (GOD) on FTG/L&SMD catalyzes glucose to produce H2O2. Then, iron ion converts H2O2 to highly active hydroxyl radicals (OH•) via Fenton reaction, leading to lethal lipid peroxidation (LPO) accumulation. Meanwhile, TA reduces Fe3+ to Fe2+ to boost Fenton reaction cycle. Sor down-regulated glutathione peroxidase 4 (GPX4) expression in another pathway to induce ferroptosis synergistically. In vitro studies have shown that compared with sorafenib (Sor), FTG/L&SMD not only has more efficient tumor targeting and higher cytotoxicity, but also inhibits tumor migration. In vivo antitumor therapy experiments demonstrate that FTG/L&SMD inhibits tumor growth efficiently, and its toxicity is negligible. In general, FTG/L&SMD can initiate Fenton reaction cycle and reinforced ferroptosis to kill tumor cells, which is a promising anti-tumor nano-drug for NSCLC.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Ferroptose , Neoplasias Pulmonares , Nanopartículas Multifuncionais , Nanopartículas , Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Linhagem Celular Tumoral , Humanos , Peróxido de Hidrogênio , Neoplasias Pulmonares/tratamento farmacológico , Nanopartículas/uso terapêutico
3.
Biomed Pharmacother ; 142: 112061, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34449313

RESUMO

CRISPR/Cas9 system has been used as the most powerful gene editing tool for precision medicine and advanced gene therapy. However, its wide applications are limited by the poor biosafety of lentivirus delivery vectors though with high-efficiency transduction. To construct a safer vector and promote genome integration, the CRISPR/Cas9 gene is cloned into a plasmid-based non-viral safe vector Sleeping-Beauty (SB) transposon in this study to obtain pT2SpCas9. Meanwhile, PDA/DEX-PEI@HA (PDPH) nanoparticles are constructed to facilitate the precise CRISPR/Cas9 targeting delivery, by using polydopamine (PDA) as the carrier, hyaluronic acid (HA) as the cell-targeting ligand and dexamethasone (DEX) as the nuclear localization signal (NLS). The results showed that PDPH could deliver pDNA efficiently into the cell and further into the nucleus. The transfection efficiency of PDPH is much higher than that of NPs without HA and DEX. Remarkably, the cytotoxicity of PDPH is negligible in comparison to PEI25k and PEI10k. Western blots showed that after the transfection of PDPH/pT2SpCas9-Nanog/SB11, Nanog protein in HeLa cells is knocked out, and the proliferation and migration abilities of tumor cells are significantly decreased. This study demonstrates that PDA/DEX-PEI25k@HA/pT2SpCas9 (PDPH25 K/pT2SpCas9) has the great potential as a non-viral gene vector for CRISPR/Cas9 delivery and clinical medication.


Assuntos
Proteína 9 Associada à CRISPR/genética , Técnicas de Transferência de Genes , Nanopartículas , Transposases/genética , Dexametasona/metabolismo , Edição de Genes/métodos , Técnicas de Inativação de Genes , Terapia Genética/métodos , Vetores Genéticos/genética , Células HeLa , Humanos , Ácido Hialurônico/metabolismo , Indóis/química , Ligantes , Proteína Homeobox Nanog/genética , Plasmídeos/genética , Polietilenoimina/química , Polímeros/química , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...