Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1431835, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38957598

RESUMO

Cotton fiber, the mainstay of the world's textile industry, is formed by the differentiation of epidermal cells on the outer peridium of the ovule. The TBL gene family is involved in the regulation of epidermal hair development as well as response to abiotic stress. However, the function of TBL genes in cotton has not been systematically studied yet. Here, we identified 131 and 130 TBL genes in TM-1 (Gossypium hirsutum) and Hai7124 (Gossypium barbadense), respectively. Phylogenetic, gene structure, expression pattern and cis-element of promoter analysis were performed and compared. Single gene association analysis indicated that more TBL genes related to fiber quality traits were found in G. barbadense, whereas more genes associated with yield traits were found in G. hirsutum. One gene, GhTBL84 (GH_D04G0930), was induced by treatment at 4°C for 12 and 24 h in G. hirsutum and silencing of the GhTBL84 gene by VIGS technology in TM-1 can significantly improve the resistance of cotton seedlings to low temperature stress. In sum, our study conducted a genome-wide identification and comparative analysis of TBL family genes in G. hirsutum and G. barbadense and demonstrated a group of TBL genes significantly associated with fiber quality and excavated cold stress responsive gene, such as GhTBL84, providing a theoretical basis for further improving cotton agronomic traits.

2.
Front Plant Sci ; 13: 881394, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35615144

RESUMO

Hickory (Carya cathayensis Sarg.) is a monoecious plant of the genus Carya of the Juglandaceae family. Its nuts contain a number of nutritional compounds and are deeply loved by consumers. Interestingly, it was observed that the color of hickory stigma changed obviously from blooming to mature. However, the molecular mechanism underlying color formation during stigma development and the biological significance of this phenomenon was mostly unknown. In this work, pigment content, reactive oxygen species (ROS) removal capacity, and transcriptome analysis of developing stigma of hickory at 4 differential sampling time points (S1, S2, S3, and S4) were performed to reveal the dynamic changes of related pigment, antioxidant capacity, and its internal molecular regulatory mechanism. It was found that total chlorophyll content was decreased slightly from S1 to S4, while total carotenoids content was increased from S1 to S3 but decreased gradually from S3 to S4. Total anthocyanin content continued to increase during the four periods of stigma development, reaching the highest level at the S4. Similarly, the antioxidant capacity of stigma was also gradually improved from S1 to S4. Furthermore, transcriptome analysis of developing hickory stigma identified 31,027 genes. Time-series analysis of gene expressions showed that these genes were divided into 12 clusters. Cluster 5 was enriched with some genes responsible for porphyrin and chlorophyll metabolism, carotenoid metabolism, and photosynthesis. Meanwhile, cluster 10 was enriched with genes related to flavonoid metabolism, including anthocyanin involved in ROS scavenging, and its related genes were mainly distributed in cluster 12. Based on the selected threshold values, a total of 10432 differentially expressed genes were screened out and enriched in the chlorophyll, carotenoid, anthocyanin, and ROS metabolism. The expression trends of these genes provided plausible explanations for the dynamic change of color and ROS level of hickory stigma with development. qRT-PCR analyses were basically consistent with the results of RNA-seq. The gene co-regulatory networks of pigment and ROS metabolism were further constructed and MYB113 (CCA0887S0030) and WRKY75 (CCA0573S0068) were predicted to be two core transcriptional regulators. These results provided in-depth evidence for revealing the molecular mechanism of color formation in hickory stigma and its biological significance.

3.
Tree Physiol ; 42(3): 684-702, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-34409460

RESUMO

Hickory (Carya cathayensis Sarg.) is an extraordinary nut-bearing deciduous arbor with high content of oil in its embryo. However, the molecular mechanism underlying high oil accumulation is mostly unknown. Here, we reported that the lipid droplets and oil accumulation gradually increased with the embryo development and the oil content was up to ~76% at maturity. Furthermore, transcriptome and proteome analysis of developing hickory embryo identified 32,907 genes and 9857 proteins. Time-series analysis of gene expressions showed that these genes were divided into 12 clusters and lipid metabolism-related genes were enriched in Cluster 3, with the highest expression levels at 95 days after pollination (S2). Differentially expressed genes and proteins indicated high correlation, and both were enriched in the lipid metabolism. Notably, the genes involved in biosynthesis, transport of fatty acid/lipid and lipid droplets formation had high expression levels at S2, while the expression levels of other genes required for suberin/wax/cutin biosynthesis and lipid degradation were very low at all the sampling time points, ultimately promoting the accumulation of oil. Quantitative reverse-transcription PCR analysis also verified the results of RNA-seq. The co-regulatory networks of lipid metabolism were further constructed and WRINKLED1 (WRI1) was a core transcriptional factor located in the nucleus. Of note, CcWRI1A/B could directly activate the expression of some genes (CcBCCP2A, CcBCCP2B, CcFATA and CcFAD3) required for fatty acid synthesis. These results provided in-depth evidence for revealing the molecular mechanism of high oil accumulation in hickory embryo.


Assuntos
Carya , Carya/genética , Carya/metabolismo , Ácidos Graxos/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteoma/genética , Proteoma/metabolismo , Sementes/genética , Sementes/metabolismo , Transcriptoma
4.
Food Chem ; 370: 130975, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34507207

RESUMO

Hickory (Carya cathayensis) nuts contain higher amount of lipids, and possess high nutritional value and substantial health benefits. However, their lipid composition and dynamic changes during embryogenesis have not been thoroughly investigated. Therefore, lipidomics profile and lipid dynamic changes during embryonic development were analyzed using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Totally, 544 kinds of lipids were identified in mature hickory nuts with higher proportions of glycerolipids (59.94%) and glycerophospholipids (38.66%). Notably, diacylglycerols showed gradual uptrends, which corresponded with total glycerolipid and glycerophospholipid at middle and late stage of embryogenesis, suggesting the pivotal role of diacylglycerols in the accumulation of glycerolipids and glycerophospholipids. Moreover, triacylglycerols, diacylglycerols, phosphatidylethanolamines and phosphatidylcholines had high relative content with abundance of unsaturated fatty acids, specifically oleic acid, linoleic acid and linolenic acid, localized mainly at sn-2 lipid position. Together, our study provides innovative perspectives for studying the nutritional benefits of hickory nut lipids.


Assuntos
Carya , Cromatografia Líquida , Desenvolvimento Embrionário , Lipidômica , Nozes , Ácido Oleico , Espectrometria de Massas em Tandem
5.
Food Chem ; 374: 131688, 2022 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-34915369

RESUMO

Pecan and hickory nuts are two of consumers' favorite ones. Pecan seeds can be eaten fresh, while hickory ones must remove astringency before eating. Here, we reported that total phenols, flavonoids and condensed tannins of hickory seeds were reduced after de-astringent treatments. They gradually increased with development, showing higher levels in hickory seed coat at mid-late periods than that in pecan's. Widely-targeted metabonomics analysis of developing testa identified 424 kinds of components, including 101, 38, 58, 27 classes of flavonoids, tannins, phenolic acids, organic acids and others, showing 16 different changing trends. Notably, most kinds of flavonoids, hydrolysable tannins and phenolic acids at maturity were more than that of pecan's, while oligomeric condensed tannins were opposite. Gene expression analysis provided further explanations for their dynamic accumulation. These results unraveled potential astringent components in hickory testa and preliminary molecular mechanisms of their dynamic changes, offering theoretical basis for the targeted de-astringency.


Assuntos
Carya , Adstringentes , Flavonoides , Metabolômica , Fenóis
6.
Front Plant Sci ; 12: 664470, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34079571

RESUMO

Tannins are important polyphenol compounds with different component proportions in different plant species. The plants in the Juglandaceae are rich in tannins, including condensed tannins and hydrolyzable tannins. In this study, we identified seven tannase genes (TAs) responsible for the tannin metabolism from walnut, pecan, and Chinese hickory, and three nut tree species in the Juglandaceae, which were divided into two groups. The phylogenetic and sequence analysis showed that TA genes and neighboring clade genes (TA-like genes) had similar sequences compared with other carboxylesterase genes, which may be the origin of TA genes produced by tandem repeat. TA genes also indicated higher expressions in leaf than other tissues and were quickly up-regulated at 3 h after leaf injury. During the development of the seed coat, the expression of the synthesis-related gene GGTs and the hydrolase gene TAs was continuously decreased, resulting in the decrease of tannin content in the dry sample of the seed coat of Chinese hickory. However, due to the reduction in water content during the ripening process, the tannin content in fresh sample increased, so the astringent taste was obvious at the mature stage. In addition, the CcGGTs' expression was higher than CiGGTs in the initiation of development, but CcTAs continued to be down-regulated while CiTA2a and CiTA2b were up-regulated, which may bring about the significant differences in tannin content and astringent taste between Chinese hickory and pecan. These results suggested the crucial role of TAs in wound stress of leaves and astringent ingredient accumulation in seed coats of two nut tree species in the Juglandaceae.

7.
Chem Commun (Camb) ; 57(12): 1502-1505, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33443266

RESUMO

Electroreduction of CO2 to HCOOH with high current densities and efficiencies remains a challenge. Herein, we developed a metallic Bi catalyst with abundant grain boundaries through the electrochemical transformation of BiPO4 nanorods to boost the catalytic performance of the electroreduction of CO2 to HCOOH. The phosphate-derived Bi catalyst (PD-Bi) achieved an FE of 91.9% for HCOOH at a high current density of -600.0 mA cm-2. Mechanistic study revealed that the abundant grain boundaries within PD-Bi promoted the adsorption of CO2 and stabilization of the CO2˙- intermediate, resulting in facilitated CO2 activation and thus enhanced catalytic performance.

8.
Adv Sci (Weinh) ; 7(22): 1902989, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33240749

RESUMO

As a profitable product from CO2 electroreduction, HCOOH holds economic viability only when the selectivity is higher than 90% with current density (j) over -200.0 mA cm-2. Herein, Bi@Sn core-shell nanoparticles (Bi core and Sn shell, denoted as Bi@Sn NPs) are developed to boost the activity and selectivity of CO2 electroreduction into HCOOH. In an H-cell system with 0.5 m KHCO3 as electrolyte, Bi@Sn NPs exhibit a Faradaic efficiency for HCOOH (FEHCOOH) of 91% with partial j for HCOOH (j HCOOH) of -31.0 mA cm-2 at -1.1 V versus reversible hydrogen electrode. The potential application of Bi@Sn NPs is testified via chronopotentiometric measurements in the flow-cell system with 2.0 m KHCO3 electrolyte. Under this circumstance, Bi@Sn NPs achieve an FEHCOOH of 92% with an energy efficiency of 56% at steady-state j of -250.0 mA cm-2. Theoretical studies indicate that the energy barrier of the potential-limiting step for the formation of HCOOH is decreased owing to the compressive strain in the Sn shell, resulting in the enhanced catalytic performance.

9.
Nat Commun ; 11(1): 1215, 2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-32139683

RESUMO

Single-atom catalysts (SACs) exhibit intriguing catalytic performance owing to their maximized atom utilizations and unique electronic structures. However, the reported strategies for synthesizing SACs generally have special requirements for either the anchored metals or the supports. Herein, we report a universal approach of electrochemical deposition that is applicable to a wide range of metals and supports for the fabrication of SACs. The depositions were conducted on both cathode and anode, where the different redox reactions endowed the SACs with distinct electronic states. The SACs from cathodic deposition exhibited high activities towards hydrogen evolution reaction, while those from anodic deposition were highly active towards oxygen evolution reaction. When cathodically- and anodically-deposited Ir single atoms on Co0.8Fe0.2Se2@Ni foam were integrated into a two-electrode cell for overall water splitting, a voltage of 1.39 V was required at 10 mA cm-2 in alkaline electrolyte.

10.
ACS Appl Mater Interfaces ; 11(45): 42271-42279, 2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31647214

RESUMO

Vanadium-doped strontium molybdate (SVM) has been investigated as a potential anode material for solid oxide fuel cells due to its high electronic conductivity of about 1000 S cm-1 at 800 °C in reducing atmospheres. In this work, NiO is introduced to SVM with the B-site excess design to induce in situ growth of Ni nanoparticles in the anodic operational conditions. The Ni particles are exsolved from the parent oxide phase as clearly demonstrated with various techniques including X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, and transmission electron microscopy. The exsolved Ni nanoparticles significantly boost the electrocatalytic activity toward fuel oxidation reaction, improving the peak power density by 160% from 0.21 to 0.56 W cm-2 at 800 °C when using H2 as the fuel, meanwhile reducing the total interfacial polarization resistance by 56% from 0.81 to 0.36 Ω cm2. The Ni-exsolved SVM anode also shows excellent catalytic activity toward H2S-containing and hydrocarbon fuels, providing peak power densities of 0.43, 0.36, and 0.22 W cm-2 at 800 °C for H2-50 ppm H2S, syngas, and ethanol, respectively. In addition, the cell with the Ni-exsolved SVM anode presents a stable power output, indicating that the Ni-SVM is a potential SOFC anode electrocatalyst for various fuels.

11.
Environ Sci Pollut Res Int ; 26(16): 16449-16456, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30980377

RESUMO

The composition of SrCuxO mixed metal oxides (MMOs) was engineered via varying the amount of copper relative to strontium. As-synthesized SrCuxO were highly active for degrading methyl orange (MO) pollutant at dark ambient conditions without the aid of other reagents. The catalytic activity of SrCuxO demonstrated a reverse-volcano relationship with copper content. Copper-rich MMOs (SrCu2O) exhibited the highest degradation activity for MO by far and degraded ca. 96% MO within 25 min. MO degradation over SrCu2O was a surface-catalytic reaction and fitted pseudo-first-order reaction kinetics. The contact between MO molecules and catalyst surface initiated the reaction via the catalytic-active phase (Cu+/Cu2+ redox pair), which serves as an electron-transfer shuttle ([Formula: see text]) from MO to dissolved O2, inducing the consecutive generation of reactive oxygen species, which resulted in MO degradation as evidenced by radical trapping experiment. XPS and XRD analysis revealed that active phases in SrCu2O materials underwent irreversible transformation after reaction, contributing to the observed deactivation in the cycling experiment. The observations in this study demonstrate the significance of chemical composition tailoring in catalyst synthesis for environmental remediation under dark ambient conditions. Graphical abstract.


Assuntos
Compostos Azo/química , Cobre/química , Óxidos/química , Estrôncio/química , Catálise , Poluentes Ambientais/química , Recuperação e Remediação Ambiental , Cinética , Oxirredução , Espectroscopia Fotoeletrônica , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...