Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(20): 14278-14286, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38727720

RESUMO

The development of catalysts serves as the cornerstone of innovation in synthesis, as exemplified by the recent discovery of photoenzymes. However, the repertoire of naturally occurring enzymes repurposed by direct light excitation to catalyze new-to-nature photobiotransformations is currently limited to flavoproteins and keto-reductases. Herein, we shed light on imine reductases (IREDs) that catalyze the remote C(sp3)-C(sp3) bond formation, providing a previously elusive radical hydroalkylation of enamides for accessing chiral amines (45 examples with up to 99% enantiomeric excess). Beyond their natural function in catalyzing two-electron reductive amination reactions, upon direct visible-light excitation or in synergy with a synthetic photoredox catalyst, IREDs are repurposed to tune the non-natural photoinduced single-electron radical processes. By conducting wet mechanistic experiments and computational simulations, we unravel how engineered IREDs direct radical intermediates toward the productive and enantioselective pathway. This work represents a promising paradigm for harnessing nature's catalysts for new-to-nature asymmetric transformations that remain challenging through traditional chemocatalytic methods.

2.
Opt Express ; 32(6): 10146-10157, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38571233

RESUMO

The superlattice electron blocking layer (EBL) has been proposed to reduce the electron leakage of the deep ultraviolet light emitting diodes (DUV-LEDs). However, the hole transport is hindered by the barriers of EBL and the improvement of hole injection efficiency still suffers enormous challenges. The superlattice step doped (SLSD) EBL is proposed to improve the hole injection efficiency while enhancing the electron confinement capability. The SLSD EBL enhances the electron confinement capability by multi-reflection effects on the electron wave function. And a built-in electric field towards the active region is generated by superlattice step doping, which facilitates the transport of holes into the multiple quantum wells. The Advaced Physical Model of Semiconductor Devices (APSYS) software is used to simulate the DUV-LEDs with conventional EBL, superlattice EBL, superlattice doped EBL, and SLSD EBL. The results indicate that the SLSD EBL contributes to the increased electron concentration in the multiple quantum wells, the reduced electron leakage in the p-type region, the increased hole injection current, and the increased radiative recombination rate. When the current is 60 mA, the external quantum efficiency of DUV-LED with SLSD EBL is increased to 5.27% and the output power is increased to 13.81 mW. The SLSD EBL provides a valuable reference for solving the problems of serious electron leakage and insufficient hole injection of the DUV-LEDs.

3.
Opt Express ; 32(6): 10284-10294, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38571244

RESUMO

While traditional tunnel junction (TJ) light-emitting diodes (LEDs) can enhance current diffusion and increase hole injection efficiency, their reliance on highly doped AlGaN layers to improve hole tunneling efficiency results in a higher conduction voltage, adversely impacting LED device performance. This paper proposes a non-heavy doped pnp-AlGaN TJ deep ultraviolet (DUV) LED with a low conduction voltage. By inserting the TJ near the active region, between the electron blocking layer and the hole supply layer, the need for heavily doped AlGaN is circumvented. Furthermore, the LED leverages the polarization charge in the pnp-AlGaN TJ layer to decrease the electric field strength, enhancing hole tunneling effects and reducing conduction voltage. The non-heavy doped pnp-AlGaN TJ LED effectively enhances carrier concentration in the quantum well, achieving a more uniform distribution of electrons and holes, thus improving radiative recombination efficiency. Consequently, at an injection current of 120 A/cm2, compared to the traditional structure LED (without TJ), the proposed LED exhibits a 190.7% increase in optical power, a 142.8% increase in maximum internal quantum efficiency (IQE) to 0.85, and a modest efficiency droop of only 5.8%, with a conduction voltage of just 4.1V. These findings offer valuable insights to address the challenges of high heavy doped TJ and elevated conduction voltage in high-performance TJ DUV LEDs.

4.
Nature ; 625(7993): 74-78, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38110574

RESUMO

Enzymes are recognized as exceptional catalysts for achieving high stereoselectivities1-3, but their ability to control the reactivity and stereoinduction of free radicals lags behind that of chemical catalysts4. Thiamine diphosphate (ThDP)-dependent enzymes5 are well-characterized systems that inspired the development of N-heterocyclic carbenes (NHCs)6-8 but have not yet been proved viable in asymmetric radical transformations. There is a lack of a biocompatible and general radical-generation mechanism, as nature prefers to avoid radicals that may be harmful to biological systems9. Here we repurpose a ThDP-dependent lyase as a stereoselective radical acyl transferase (RAT) through protein engineering and combination with organophotoredox catalysis10. Enzyme-bound ThDP-derived ketyl radicals are selectively generated through single-electron oxidation by a photoexcited organic dye and then cross-coupled with prochiral alkyl radicals with high enantioselectivity. Diverse chiral ketones are prepared from aldehydes and redox-active esters (35 examples, up to 97% enantiomeric excess (e.e.)) by this method. Mechanistic studies reveal that this previously elusive dual-enzyme catalysis/photocatalysis directs radicals with the unique ThDP cofactor and evolvable active site. This work not only expands the repertoire of biocatalysis but also provides a unique strategy for controlling radicals with enzymes, complementing existing chemical tools.


Assuntos
Aciltransferases , Biocatálise , Luz , Liases , Acilação , Aciltransferases/química , Aciltransferases/metabolismo , Aldeídos/metabolismo , Biocatálise/efeitos da radiação , Domínio Catalítico , Radicais Livres/metabolismo , Cetonas/metabolismo , Liases/química , Liases/metabolismo , Oxirredução , Engenharia de Proteínas , Estereoisomerismo , Tiamina Pirofosfato/metabolismo
5.
Org Lett ; 25(9): 1583-1588, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36826372

RESUMO

A photoinduced copper-catalyzed C(sp3)-P bond formation has been developed by using N-(acyloxy)phthalimides as radical precursors and secondary phosphine boranes as coupling partners. A variety of alkyl carboxylic acid derivatives can be readily transformed into the corresponding phosphines with high reaction efficiency and structural diversity. Besides, utilizing the 1,5-HAT of the N-centered radical process, the δ C(sp3)-H bond can be coupled with secondary phosphines, which provides a novel method for the regioselective formation of C(sp3)-P bonds.

6.
Opt Express ; 30(20): 36446-36455, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36258572

RESUMO

Aluminum-rich p-AlGaN electron blocking layers (EBLs) are typically used for preventing overflow of electrons from the active region in AlGaN-based deep ultraviolet (DUV) laser diode (LD). However, these cannot effectively prevent electron leakage and form barrier layers, which affects the hole injection efficiency. Herein, the traditional p-AlGaN EBL in LD is replaced with an undoped BGaN EBL. The undoped BGaN EBL LD increases the effective barrier height of the conduction band to prevent the leakage of electrons and decreases the energy loss caused by the polarization induced electric field, enhancing the hole injection. The slope efficiency of the undoped BGaN EBL LD is 289% higher than that of the highly doped AlGaN EBL LD, and its threshold current is 51% lower. Therefore, the findings of this study provide insights for solving the problems of electron leakage and insufficient hole injection in high-performance and undoped EBL DUV LDs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...