Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Chem ; 11: 1097250, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36742035

RESUMO

In Yb-Er co-doped upconversion (UC) nanomaterials, upconversion luminescence (UCL) can be modulated to generate multiband UCL emissions by changing the concentration of activator Er3+. Nonetheless, the effect of the Er3+ concentrations on the kinetics of these emissions is still unknown. We here study the single ß-NaYF4:Yb3+/Er3+ microcrystal (MC) doped with different Er3+ concentrations by nanosecond time-resolved spectroscopy. Interestingly, different Er3+ doping concentrations exhibit different UCL emission bands and UCL response rates. At low Er3+ doping concentrations (1 mol%), multiband emission in ß-NaYF4:Yb3+/Er3+ (20/1 mol%) MCs could not be observed and the response rate of UCL was slow (5-10 µs) in ß-NaYF4:Yb3+/Er3+. Increasing the Er3+ doping concentration to 10 mol% can shorten the distance between Yb3+ ions and Er3+ ions, which promotes the energy transfer between them. ß-NaYF4:Yb3+/Er3+ (20/10 mol%) can achieve obvious multiband UCL and a quick response rate (0.3 µs). However, a further increase in the Er doping concentration (80 mol%) makes MCs limited by the CR process and cannot achieve the four-photon UC process (4F5/2 → 2K13/2 and 2H9/2 → 2D5/2). Therefore, the result shows that changing the Er3+ doping concentration could control the energy flow between the different energy levels in Er3+, which could affect the response time and UCL emission of the Yb/Er doped rare earth materials. Our work can facilitate the development of fast-response optoelectronics, optical-sensing, and display industries.

2.
Proc Natl Acad Sci U S A ; 117(16): 8719-8726, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32241887

RESUMO

Rapid methods for diagnosis of bacterial infections are urgently needed to reduce inappropriate use of antibiotics, which contributes to antimicrobial resistance. In many rapid diagnostic methods, DNA oligonucleotide probes, attached to a surface, bind to specific nucleotide sequences in the DNA of a target pathogen. Typically, each probe binds to a single target sequence; i.e., target-probe binding is monovalent. Here we show using computer simulations that the detection sensitivity and specificity can be improved by designing probes that bind multivalently to the entire length of the pathogen genomic DNA, such that a given probe binds to multiple sites along the target DNA. Our results suggest that multivalent targeting of long pieces of genomic DNA can allow highly sensitive and selective binding of the target DNA, even if competing DNA in the sample also contains binding sites for the same probe sequences. Our results are robust to mild fragmentation of the bacterial genome. Our conclusions may also be relevant for DNA detection in other fields, such as disease diagnostics more broadly, environmental management, and food safety.


Assuntos
Desenho Assistido por Computador , Sondas de DNA , DNA Bacteriano/isolamento & purificação , Genoma Bacteriano , Sondas de Oligonucleotídeos , Biologia Computacional/métodos , Simulação por Computador , DNA Bacteriano/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Sensibilidade e Especificidade , Análise de Sequência de DNA/métodos
3.
Proc Natl Acad Sci U S A ; 115(32): 8137-8142, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30045862

RESUMO

A key objective in DNA-based material science is understanding and precisely controlling the mechanical properties of DNA hydrogels. We perform microrheology measurements using diffusing wave spectroscopy (DWS) to investigate the viscoelastic behavior of a hydrogel made of Y-shaped DNA (Y-DNA) nanostars over a wide range of frequencies and temperatures. We observe a clear liquid-to-gel transition across the melting temperature region for which the Y-DNA bind to each other. Our measurements reveal a cross-over between the elastic [Formula: see text] and loss modulus [Formula: see text] around the melting temperature [Formula: see text] of the DNA building blocks, which coincides with the systems percolation transition. This transition can be easily shifted in temperature by changing the DNA bond length between the Y shapes. Using bulk rheology as well, we further show that, by reducing the flexibility between the Y-DNA bonds, we can go from a semiflexible transient network to a more energy-driven hydrogel with higher elasticity while keeping the microstructure the same. This level of control in mechanical properties will facilitate the design of more sensitive molecular sensing tools and controlled release systems.


Assuntos
DNA/química , Hidrogéis/química , Reologia , Fenômenos Biofísicos , Biofísica , DNA/efeitos da radiação , Difusão , Elasticidade , Hidrogéis/efeitos da radiação , Lasers Semicondutores , Nanotecnologia , Polímeros/química , Análise Espectral , Temperatura , Temperatura de Transição , Viscosidade
4.
Soft Matter ; 13(19): 3664-3674, 2017 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-28451674

RESUMO

The viscosity of a dense suspension has contributions from hydrodynamics and particle interactions, both of which depend upon the flow-induced arrangement of particles into fragile structures. Here, we study the response of nearly hard sphere suspensions to oscillatory shear using simulations and experiments in the athermal, non-inertial limit. Three distinct regimes are observed as a function of the strain amplitude γ0. For γ0 < 10-1, initially non-contacting particles remain separated and the suspension behaves similarly to a Newtonian fluid, with the shear stress proportional to the strain rate, and the normal stresses close to zero. For γ0 > 101, the microstructure becomes well-established at the beginning of each shear cycle and the rheology is quasi-Newtonian: the shear stress varies with the rate, but flow-induced structures lead to non-zero normal stresses. At intermediate γ0, particle-particle contacts break and reform across entire oscillatory cycles, and we probe a non-linear regime that reveals the fragility of the material. Guided by these features, we further show that oscillatory shear may serve as a diagnostic tool to isolate specific stress contributions in dense suspensions, and more generally in those materials whose rheology has contributions with both hydrodynamic and non-hydrodynamic origin.

5.
Sci Adv ; 2(8): e1600881, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27532053

RESUMO

We report a study of reversible adsorption of DNA-coated colloids on complementary functionalized oil droplets. We show that it is possible to control the surface coverage of oil droplets using colloidal particles by exploiting the fact that, during slow adsorption, compositional arrest takes place well before structural arrest occurs. As a consequence, we can prepare colloid-coated oil droplets with a "frozen" degree of loading but with fully ergodic colloidal dynamics on the droplets. We illustrate the equilibrium nature of the adsorbed colloidal phase by exploring the quasi-two-dimensional phase behavior of the adsorbed colloids under the influence of depletion interactions and present simulations of a simple model that illustrates the nature of the compositional arrest and the structural ergodicity.


Assuntos
Coloides/química , DNA/química , Água/química , Adsorção , Coloides/metabolismo , DNA/metabolismo , Cinética , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...