Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(14): e2312411, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38155583
2.
Natl Sci Rev ; 10(11): nwad112, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37818115

RESUMO

The recent discovery of superconductivity in infinite-layer nickelates generates tremendous research endeavors, but the ground state of their parent compounds is still under debate. Here, we report experimental evidence for the dominant role of Kondo scattering in the underdoped Nd1-xSrxNiO2 thin films. A resistivity minimum associated with logarithmic temperature dependence in both longitudinal and Hall resistivities are observed in the underdoped Nd1-xSrxNiO2 samples before the superconducting transition. At lower temperatures down to 0.04 K, the resistivities become saturated, following the prediction of the Kondo model. A linear scaling behavior [Formula: see text] between anomalous Hall conductivity [Formula: see text] and conductivity [Formula: see text]is revealed, verifying the dominant Kondo scattering at low temperature. The effect of weak (anti-)localization is found to be secondary. Our experiments can help in clarifying the basic physics in the underdoped Nd1-xSrxNiO2 infinite-layer thin films.

3.
Adv Mater ; 35(32): e2301339, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37308132

RESUMO

Heat current in ferromagnets can generate a transverse electric voltage perpendicular to magnetization, known as anomalous Nernst effect (ANE). ANE originates intrinsically from the combination of large Berry curvature and density of states near the Fermi energy. It shows technical advantages over the conventional longitudinal Seebeck effect in converting waste heat to electricity due to its unique transverse geometry. However, materials showing giant ANE remain to be explored. Herein,  a large ANE thermopower of Syx ≈ 2 µV K-1 at room temperature in ferromagnetic Fe3 Pt epitaxial films is reported, which also show a giant transverse thermoelectric conductivity of αyx ≈ 4 A K-1  m-1 and a remarkable coercive field of 1300 Oe. The theoretical analysis reveals that the strong spin-orbit interaction in addition to the hybridization between Pt 5d and Fe 3d electrons leads to a series of distinct energy gaps and large Berry curvature in the Brillouin zone, which is the key for the large ANE. These results highlight the important roles of both Berry curvature and spin-orbit coupling in achieving large ANE at zero magnetic field, providing pathways to explore materials with giant transverse thermoelectric effect without an external magnetic field.

4.
J Phys Condens Matter ; 32(35): 355703, 2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32489186

RESUMO

Weyl semimetal WTe2 has attracted considerable attention owing to its extremely large, unsaturated and quadratic magnetoresistance. Here, we study the magnetotransport properties of WTe2-δ thin film, which shows an unsaturated and linear magnetoresistance of up to ∼1650%. A more complex and accurate method, known as the maximum entropy mobility spectrum, is used to analyze the mobility and density of carriers. The results show that linear magnetoresistance can be explained by the classical disorder model because the slope of linear magnetoresistance and the crossover field are proportional to the mobility and inverse mobility, respectively. Furthermore, the validity of the maximum entropy mobility spectrum is validated by the Shubnikov-de Haas oscillations. Moreover, at low temperature, we determined that the unsaturated and near-quadratic magnetoresistance in the WTe1.93 thin film can be explained by charge compensation. Note that the electron-hole compensation is broken in the WTe1.42 thin film, which indicates that the carrier scattering induced by the disorder may suppress the charge compensation in the WTe2 sample with defects/dopants. To summarize, the discovery of disorder-induced linear magnetoresistance allows us to explain different magnetoresistance behaviors of WTe2.

5.
J Phys Condens Matter ; 32(23): 235003, 2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32050164

RESUMO

Electrical transport property is closely related to the dimensionality of carriers' distribution. In this work, we succeed in tuning the carriers' distribution and the Rashba spin-orbit coupling at LaAlO3/SrTiO3 interface by varying the oxygen pressure (c-P O2) adopted in crystalline LaAlO3 growth. Measurements of the in-plane anisotropic magnetoresistance and the conducting-layer thickness indicate that the carriers' distribution changes from three to two dimensions with c-P O2 increasing, i.e. the electron confinement gets stronger. Importantly, by measuring the low-temperature out-of-plane magnetoresistance and analyzing the weak localization/weak anti-localization, we find that the strength of Rashba spin-orbit coupling can be enhanced by electron confinement. The electron confinement is a manifestation of breaking of spatial inversion symmetry. Therefore, our work reveals the intimate relationship between spatial inversion symmetry breaking and Rashba spin-orbit coupling at the LaAlO3/SrTiO3 interface, and provides a new method to tune the Rashba spin-orbit coupling, which is valuable in the application of oxide-spintronics.

6.
Sci Bull (Beijing) ; 65(3): 201-207, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36659173

RESUMO

Mixed-valance manganites with strong electron correlation exhibit strong potential for spintronics, where emergent magnetic behaviors, such as propagation of high-frequency spin waves and giant topological Hall Effects can be driven by their mesoscale spin textures. Here, we create magnetic vortex clusters with flux closure spin configurations in single-crystal La0.67Sr0.33MnO3 wire. A distinctive transformation from out-of-plane domains to a vortex state is directly visualized using magnetic force microscopy at 4 K in wires when the width is below 1.0 µm. The phase-field modeling indicates that the inhomogeneous strain, accompanying with shape anisotropy, plays a key role for stabilizing the flux-closure spin structure. This work offers a new perspective for understanding and manipulating the non-trivial spin textures in strongly correlated systems.

7.
J Phys Condens Matter ; 32(1): 015702, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31519019

RESUMO

We measure planar Hall effect (PHE) and longitudinal anisotropic magnetoresistance (AMR) with a magnetic field rotating in the a-b plane in the type-II Dirac semimetal PdTe2. The measured PHE and AMR curves can be fitted by the theoretical equations; however, a detailed analysis of the extracted data demonstrates that the parameter related to PHE and AMR has no relationship with the chiral anomaly due to the absence of negative longitudinal magnetoresistance (MR) when the electric and magnetic fields are parallel to each other. Meanwhile, we prove that the origin of PHE in PdTe2 is the anisotropic orbital MR. Our work suggests that negative longitudinal MR is necessary to identify chiral anomaly, and we cannot in general use PHE as a signal for the presence of the chiral anomaly in Dirac/Weyl semimetals.

8.
ACS Appl Mater Interfaces ; 11(45): 42751-42759, 2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31626529

RESUMO

The domain morphology in the growth of transition-metal dichalcogenides (TMDCs) is mostly triangular but rarely dendritic. Here, we report a robust chemical vapor deposition method to fabricate atomic-thin 2H-phase MoS2 dendrites on several single-crystalline substrates with different lattice structures, such as rutile-TiO2(001), SrTiO3(001), and sapphire(0001). It is found that by tuning the concentration of Mo adatoms, the morphology of MoS2 domains on these substrates evolves from tridentate dendrites at a low Mo concentration to semicompact fractal domains at an intermediate Mo concentration, and to a compact triangular shape at a high Mo concentration. First-principles calculations reveal that the edge diffusion barrier of Mo is comparable to the attachment barrier, inhibiting fast Mo atom diffusion along the edge. Kinetics Monte Carlo simulations with varying Mo concentrations well reproduce the experimental results. Our combined experimental and theoretical analyses evidently show that the growth of MoS2 dendritic domains at a low Mo concentration is a nonequilibrium process, which is dominated by the kinetics of Mo adatoms. Our study presents an effective route to control the morphology of TMDCs by simply tuning the transition-metal adatom concentration.

9.
ACS Nano ; 13(1): 609-615, 2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-30604953

RESUMO

Controlling electronic processes in low-dimension electron systems is centrally important for both fundamental and applied researches. While most of the previous works focused on SrTiO3-based two-dimensional electron gases (2DEGs), here we report on a comprehensive investigation in this regard for amorphous-LaAlO3/KTaO3 2DEGs with the Fermi energy ranging from ∼13 meV to ∼488 meV. The most important observation is the dramatic variation of the Rashba spin-orbit coupling (SOC) as Fermi energy sweeps through 313 meV: The SOC effective field first jumps and then drops, leading to a cusp of ∼2.6 T. Above 313 meV, an additional species of mobile electrons emerges, with a 50-fold enhanced Hall mobility. A relationship between spin relaxation distance and the degree of band filling has been established in a wide range. It indicates that the maximal spin precession length is ∼70.1 nm and the maximal Rashba spin splitting energy is ∼30 meV. Both values are much larger than the previously reported ones. As evidenced by density functional theory calculation, these unusual phenomena are closely related to the distinct band structure of the 2DEGs composed of 5d electrons. The present work further deepens our understanding of perovskite conducting interfaces, particularly those composed of 5d transition-metal oxides.

10.
J Phys Condens Matter ; 30(40): 405002, 2018 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-30152788

RESUMO

The 2D electron systems of SrTiO3/NdGaO3 (STO/NGO) and amorphous-LaAlO3/SrTiO3/NdGaO3 (a-LAO/STO/NGO) heterojunctions were explored. An obvious interaction between in-gap states (IGSs) and carriers was found. The IGSs can trap a large number of carriers and enhance carrier scattering. As a result of the high density of IGSs in STO, the conductivity of STO/NGO was severely weakened. However, for a-LAO/STO/NGO heterojunctions, the high carrier density can reduce the effect of IGSs through the electrostatic screening effect. The competition between IGSs and the screening effect of carriers results in an insulator-metal transition and a strange temperature dependence of carrier density. We also explored the interaction between IGSs and carriers theoretically. A mathematical description was proposed and the calculated results showed good agreement with experimental findings.

11.
Sci Rep ; 8(1): 195, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29317754

RESUMO

We explored in-gap states (IGSs) in perovskite oxide heterojunction films. We report that IGSs in these films play a crucial role in determining the formation and properties of interfacial two-dimensional electron gas (2DEG). We report that electron trapping by IGSs opposes charge transfer from the film to the interface. The IGS in films yielded insulating interfaces with polar discontinuity and explained low interface carrier density of conducting interfaces. An ion trapping model was proposed to explain the physics of the IGSs and some experimental findings, such as the unexpected formation of 2DEG at the initially insulating LaCrO3/SrTiO3 interface and the influence of substitution layers on 2DEG.

12.
Sci Rep ; 8(1): 404, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29321497

RESUMO

Experimentally, we found the percentage of low valence cations, the ionization energy of cations in film, and the band gap of substrates to be decisive for the formation of two-dimensional electron gas at the interface of amorphous/crystalline oxide (a-2DEG). Considering these findings, we inferred that the charge transfer from the film to the interface should be the main mechanism of a-2DEG formation. This charge transfer is induced by oxygen defects in film and can be eliminated by the electron-absorbing process of cations in the film. Based on this, we propose a simple dipole model that successfully explains the origin of a-2DEG, our experimental findings, and some important properties of a-2DEG.

13.
Dalton Trans ; 46(14): 4860, 2017 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-28327705

RESUMO

Correction for 'Band-gap tailoring and visible-light-driven photocatalytic performance of porous (GaN)1-x(ZnO)x solid solution' by Aimin Wu et al., Dalton Trans., 2017, 46, 2643-2652.

14.
Dalton Trans ; 46(8): 2643-2652, 2017 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-28165517

RESUMO

(GaN)1-x(ZnO)x solid solution has attracted extensive attention due to its feasible band-gap tunability and excellent photocatalytic performance in overall water splitting. However, its potential application in the photodegradation of organic pollutants and environmental processing has rarely been reported. In this study, we developed a rapid synthesis process to fabricate porous (GaN)1-x(ZnO)x solid solution with a tunable band gap in the range of 2.38-2.76 eV for phenol photodegradation. Under visible-light irradiation, (GaN)0.75(ZnO)0.25 solid solution achieved the highest photocatalytic performance compared to other (GaN)1-x(ZnO)x solid solutions with x = 0.45, 0.65 and 0.85 due to its higher redox capability and lower lattice deformation. Slight Ag decoration with a content of 1 wt% on the surface of the (GaN)0.75(ZnO)0.25 solid solution leads to a significant enhancement in phenol degradation, with a reaction rate eight times faster than that of pristine (GaN)0.75(ZnO)0.25. Interestingly, phenol in aqueous solution (10 mg L-1) can also be completely degraded within 60 min, even under the direct exposure of sunlight irradiation. The photocurrent response indicates that the enhanced photocatalytic activity of (GaN)0.75(ZnO)0.25/Ag is directly induced by the improved transfer efficiency of the photogenerated electrons at the interface. The excellent phenol degradation performance of (GaN)1-x(ZnO)x/Ag further broadens their promising photocatalytic utilization in environmental processing, besides in overall water splitting for hydrogen production.

15.
ACS Appl Mater Interfaces ; 9(3): 2669-2677, 2017 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-28029770

RESUMO

The detection of UV-A rays (wavelength of 320-400 nm) using functional semiconductor nanostructures is of great importance in either fundamental research or technological applications. In this work, we report the catalytic synthesis of peculiar bicrystalline GaN nanowires and their utilization for building high-performance optoelectronic nanodevices. The as-prepared UV-A photodetector based on individual bicrystalline GaN nanowire demonstrates a fast photoresponse time (144 ms), a high wavelength selectivity (UV-A light response only), an ultrahigh photoresponsivity of 1.74 × 107 A/W and EQE of 6.08 × 109%, a sensitivity of 2 × 104%, and a very large on/off ratio of more than two orders, as well as robust photocurrent stability (photocurrent fluctuation of less than 7% among 4000 s), showing predominant advantages in comparison with other peer semiconductor photodetectors. The outstanding optoelectronic performance of the bicrystalline GaN nanowire UV-A photodetector is further analyzed based on a detailed high-resolution transmission electron microscope (HRTEM) study, and the two separated crystal domains within the GaN nanowires are believed to provide separated and rapid carrier transfer channels. This work paves a solid way toward the integration of high-performance optoelectronic nanodevices based on bicrystalline or horizontally aligned one-dimensional semiconductor nanostructures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...