Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 49(12): 3448-3451, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38875642

RESUMO

High-power semiconductor lasers with stabilized wavelengths are recognized as exemplary pumping sources for solid-state lasers. This study introduces distributed feedback (DFB) laser diode arrays designed to maintain an extensive temperature locking range. We report experimentally on high-power 808 nm DFB laser diode arrays. The first-order sinusoidal grating was fabricated using nanoimprint lithography, succeeded by inductively coupled plasma (ICP) dry etching and subsequent wet polishing. These 808 nm DFB laser diode arrays have demonstrated a measured output power of 134 W under a pulsed current of 150 A, with the heat sink temperature maintained at 25°C. The slope efficiency was determined to be 1.1 W/A. At a current of 150 A, the laser operated with a narrow spectral width over a wide temperature range, extending from -30 to 90°C, with a temperature drift coefficient of 0.0595 nm/K.

2.
Fundam Res ; 4(1): 123-130, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38933834

RESUMO

The most important optical component in an optical fiber endoscope is its objective lens. To achieve a high imaging performance level, the development of an ultra-compact objective lens is thus the key to an ultra-thin optical fiber endoscope. In this work, we use femtosecond laser 3D printing to develop a series of micro objective lenses with different optical designs. The imaging resolution and field-of-view performances of these printed micro objective lenses are investigated via both simulations and experiments. For the first time, multiple micro objective lenses with different fields of view are printed on the end face of a single imaging optical fiber, thus realizing the perfect integration of an optical fiber and objective lenses. This work demonstrates the considerable potential of femtosecond laser 3D printing in the fabrication of micro-optical systems and provides a reliable solution for the development of an ultrathin fiber endoscope.

3.
ACS Appl Mater Interfaces ; 16(23): 30443-30452, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38815155

RESUMO

Optical fiber force sensing has attracted considerable interest in biological, materials science, micromanipulation, and medical applications owing to its compact and cost-efficient configuration. However, the glass fiber has an intrinsic high Young's modulus, resulting in force sensors being generally less sensitive. While hyperelastic polymer materials can be utilized to enhance the force sensitivity, the thermodynamic properties of the polymer may weaken the sensing accuracy and reliability. Herein, we demonstrate ultracompact three-dimensional (3D)-printed multicore fiber (MCF) tip probes for simultaneous measurement of nanoforce and temperature with high sensitivity. The sensor is highly sensitive to force-induced deformation due to the special geometric features of the polymer microcantilever, and the high-temperature sensitivity can be implemented through the poly(dimethylsiloxane) (PDMS) microcavity on the same fiber facet. Moreover, the sensitivities of the fiber interferometers are remarkably enhanced by introducing the optical analogue of the Vernier effect. Such a device exhibits a force sensitivity of 56.35 nm/µN, which is more than 103 times that of all-silica fiber force sensors. The PDMS microcavity provides a temperature sensitivity of 1.447 nm/°C, measuring the local temperature of the probe and compensating for temperature crosstalk of the force detection. The proposed compact MCF-tip sensor can simultaneously measure nanoforce and temperature with high sensitivity, facilitating multiparameter sensing in a restricted space environment and showing the potential in miniaturized all-fiber multiparameter sensors.

4.
Nano Lett ; 24(10): 2980-2988, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38311846

RESUMO

The emergence of antibiotic and antifungal resistant microorganisms represents nowadays a major public health issue that might push humanity into a post-antibiotic/antifungal era. One of the approaches to avoid such a catastrophe is to advance rapid antibiotic and antifungal susceptibility tests. In this study, we present a compact, optical fiber-based nanomotion sensor to achieve this goal by monitoring the dynamic nanoscale oscillation of a cantilever related to microorganism viability. High detection sensitivity was achieved that was attributed to the flexible two-photon polymerized cantilever with a spring constant of 0.3 N/m. This nanomotion device showed an excellent performance in the susceptibility tests of Escherichia coli and Candida albicans with a fast response in a time frame of minutes. As a proof-of-concept, with the simplicity of use and the potential of parallelization, our innovative sensor is anticipated to be an interesting candidate for future rapid antibiotic and antifungal susceptibility tests and other biomedical applications.


Assuntos
Antibacterianos , Antifúngicos , Fibras Ópticas , Testes de Sensibilidade Microbiana , Candida albicans , Escherichia coli
5.
ACS Omega ; 8(44): 41943-41952, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37970020

RESUMO

Since the reagent dosage is manually adjusted according to work conditions, an event-triggered constrained model predictive control is proposed for rare earth extraction. First, the linear predictive system, based on a state space model, is established. Subsequently, the feedback correction link is fine-tuned to reduce the prediction error. Following this, an objective optimization function, incorporating input and output constraints, is introduced to calculate the appropriate reagent dosage. Finally, an event-triggering mechanism, underpinned by a designated threshold, is designed to update the controller. Simulation outcomes substantiate the efficacy of the proposed approach.

6.
Aquat Toxicol ; 261: 106572, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37307698

RESUMO

Ethyl 3-(N-butylacetamido) propanoate (EBAAP) is one of the most widely used mosquito repellents worldwide, and is also commonly used to produce cosmetics. Residues have recently been detected in surface and groundwater in many countries, and their potential to harm the environment is unknown. Therefore, more studies are needed to fully assess the toxicity of EBAAP. This is the first investigation into the developmental toxicity and cardiotoxicity of EBAAP on zebrafish embryos. EBAAP was toxic to zebrafish, with a lethal concentration 50 (LC50) of 140 mg/L at 72 hours post fertilization (hpf). EBAAP exposure also reduced body length, slowed the yolk absorption rate, induced spinal curvature and pericardial edema, decreased heart rate, promoted linear lengthening of the heart, and diminished cardiac pumping ability. The expression of heart developmental-related genes (nkx2.5, myh6, tbx5a, vmhc, gata4, tbx2b) was dysregulated, intracellular oxidative stress increased significantly, the activities of catalase (CAT) and superoxide dismutase (SOD) decreased, and malondialdehyde (MDA) content increased significantly. The expression of apoptosis-related genes (bax/bcl2, p53, caspase9, caspase3) was significantly upregulated. In conclusion, EBAAP induced abnormal morphology and heart defects during the early stages of zebrafish embryo development by potentially inducing the generation and accumulation of reactive oxygen species (ROS) in vivo and activating the oxidative stress response. These events dysregulate the expression of several genes and activate endogenous apoptosis pathways, eventually leading to developmental disorders and heart defects.


Assuntos
Cardiotoxicidade , Repelentes de Insetos , Poluentes Químicos da Água , Animais , Embrião não Mamífero/metabolismo , Estresse Oxidativo/genética , Propionatos/toxicidade , Propionatos/metabolismo , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/metabolismo , Repelentes de Insetos/toxicidade , Testes de Toxicidade
7.
Opt Lett ; 48(11): 2821-2824, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37262219

RESUMO

The nanobore fiber (NBF) is a promising nanoscale optofluidic platform due to its long nanochannel and unique optical properties. However, so far, the applications of NBF have been based only on its original fiber geometry without any extra functionalities, in contrast with various telecom fiber devices, which may limit its wide applications. Here, we provide the first, to the best of our knowledge, demonstration of NBF-based fiber Bragg gratings (FBGs) introduced by either the femtosecond (fs) laser direct writing technique or the ultraviolet (UV) laser phase mask technique. Moreover, the FBG fabricated via the UV laser was optimized, achieving a high reflectivity of 96.89% and simultaneously preserving the open nanochannel. The NBF-based FBGs were characterized in terms of temperature variation and the infiltration of different liquids, and they showed high potential for nanofluidic applications.

8.
Opt Lett ; 48(5): 1120-1123, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36857228

RESUMO

The Fresnel reflection of a splice from the air-silica interface between a hollow-core fiber (HCF) and a solid-core conventional fiber will increase the splicing loss and also cause possible instability of transmission. Here, for the first time, we develop a novel approach to fusion splicing an antireflection-coated (AR-coated) conventional fiber and an antiresonant HCF, which was generally claimed to be impossible because of the heat-induced damage of the coating, and achieve state-of-the-art ultralow fusion splicing loss less than 0.3 dB and a low return loss less than -28 dB by optimizing the splicing procedures and parameters. Our new fusion splicing approach will benefit the wide application of HCFs in telecoms, laser technologies, gyroscopes, and fiber gas cells.

9.
Environ Sci Pollut Res Int ; 29(55): 83746-83755, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35771331

RESUMO

Accumulation of toxic organic has posed a substantial pressure on the proliferation of bacterial resistance. While aromatic organics have been demonstrated to enhance the antibiotic resistance in bacteria, no information is yet available on the effects of non-aromatic organics on the variations of bacterial resistance. Here, we investigated the effects of a typical ketone (i.e., methylisobutanone (MIBK)) on the variations of antibiotic resistance in Escherichia coli (E. coli). The results showed that the growth of resistant E. coli under environmental concentration of 50 µg/L MIBK was firstly inhibited as explained by the transient disruption in the cell membrane and then recovered possibly due to the reactive oxygen species. Exposure to 50 µg/L MIBK gradually raised the abundance of representative resistance gene (ampR) in E. coli. In contrast, the high concentration of 50 mg/L MIBK continuously inhibited the growth of resistant E. coli by disrupting cell membrane and notably promoted the proliferation of ampR through enhancing the horizontal transformation and up-regulating the expression of efflux pump gene. These findings provided the first evidence for the evolution of bacterial resistance in response to ketone organics.


Assuntos
Escherichia coli , Cetonas , Cetonas/farmacologia , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos , Bactérias/genética , Genes Bacterianos
10.
Biosensors (Basel) ; 12(3)2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35323438

RESUMO

Respiration rate is an essential vital sign that requires monitoring under various conditions, including in strong electromagnetic environments such as in magnetic resonance imaging systems. To provide an electromagnetically-immune breath-sensing system, we propose an all-fiber-optic wearable breath sensor based on a fiber-tip microcantilever. The microcantilever was fabricated on a fiber-tip by two-photon polymerization microfabrication based on femtosecond laser, so that a micro Fabry-Pérot (FP) interferometer was formed between the microcantilever and the end-face of the fiber. The cavity length of the micro FP interferometer was reduced as a result of the bending of the microcantilever induced by breath airflow. The signal of breath rate was rebuilt by detecting power variations of the FP interferometer reflected light and applying dynamic thresholds. The breath sensor achieved a high sensitivity of 0.8 nm/(m/s) by detecting the reflection spectrum upon applied flow velocities from 0.53 to 5.31 m/s. This sensor was also shown to have excellent thermal stability as its cross-sensitivity of airflow with respect to the temperature response was only 0.095 (m/s)/°C. When mounted inside a wearable surgical mask, the sensor demonstrated the capability to detect various breath patterns, including normal, fast, random, and deep breaths. We anticipate the proposed wearable breath sensor could be a useful and reliable tool for respiration rate monitoring.


Assuntos
Tecnologia de Fibra Óptica , Dispositivos Eletrônicos Vestíveis , Lasers , Fibras Ópticas , Temperatura
11.
Environ Pollut ; 304: 119158, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35304179

RESUMO

Both heavy metals and radiation could affect the proliferation and dissemination of emerging antibiotic resistance pollutants. As an environmental medium rich in radioactive metals, the profile of antibiotic resistance in uranium mine remains largely unknown. A uranium mine in Guangdong province, China was selected to investigate the distribution and influencing factors of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) including intracellular ARGs (iARGs), adsorbed-extracellular ARGs (aeARGs), and free extracellular ARGs (feARGs). The result indicated that sulfonamide and tetracycline ARB could be generally detected in mining area with the absolute concentrations of 7.70 × 102-5.18 × 105 colony forming unit/g. The abundances of aeARGs in mine soil were significantly higher than those of iARGs (p < 0.05), highlighting the critical contribution of aeARGs to ARGs spread. The feARGs in mine drainage and its receiving river were abundant (3.38 × 104-1.86 × 107 copies/mL). ARB, aeARGs, and iARGs may correlate with nitrogen species and heavy metals (e.g., U and Mn), and feARGs presented a significant correlation with chemical oxygen demand (p < 0.05). These findings demonstrate the occurrence of ARB and ARGs in uranium mine for the first time, thereby contributing to the assessment and control of the ecological risk of antibiotic resistance in radioactive environments.


Assuntos
Urânio , Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , Antibacterianos/farmacologia , Bactérias/genética , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos
12.
Ecotoxicol Environ Saf ; 233: 113318, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35182799

RESUMO

Carboxin is a heterocyclic systemic fungicide, mainly used to prevent and control grain smut and wheat rust. Although its mammalian toxicity has been reported, its toxicity to acute exposure to aquatic animals is unknown. In our study, we used zebrafish as aquatic organisms to study Carboxin toxicity. Carboxin can cause developmental toxicity and cardiotoxicity in zebrafish embryos. Histopathological staining of cardiac sections reveals structural changes in zebrafish hearts, and fluorescence quantitative PCR results shows the heart developmental genes mRNA expression levels were disrupted significantly. Besides, carboxin can also cause oxidative stress and reactive oxygen species (ROS) accumulation in zebrafish embryos. The accumulation of ROS causes mitochondrial damage, which is where ATP energy is produced. So ATPase activities and gene expression level were measured and significantly decreased after exposure to carboxin. From the confocal images, the number of blood cells in the heart were decreased significantly after carboxin exposure. Besides, Carboxin exposure can inhibit myocardial cell proliferation. These are all causes to the heart failure, eventually leading to embryos death.


Assuntos
Cardiotoxicidade , Peixe-Zebra , Animais , Carboxina/metabolismo , Cardiotoxicidade/metabolismo , Embrião não Mamífero/metabolismo , Estresse Oxidativo , Peixe-Zebra/metabolismo
13.
Opt Lett ; 46(24): 6112-6115, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34913930

RESUMO

Multicore fibers (MCFs) offer a fascinating solution to the need to increase the fiber density and thus meet the exponentially growing demand for capacity in optical communication networks. Despite overwhelming research into MCFs, the desire for a general fusion splicing scheme between dissimilar MCFs remains unanswered. Here, we propose a tapering technique to reshape MCFs that includes both reverse-tapering and down-tapering schemes and can be exploited to tailor the core-to-core spacing and modify the modal property of MCFs. By matching both the spacing and the mode field diameter, we demonstrated a low-loss (0.18 ± 0.10 dB) and low-crosstalk (-68 ± 3 dB) fusion splice between two spacing-mismatched MCFs with a spacing difference of up to 26 µm. The proposed novel schemes are also suitable for splicing between MCFs with slightly different spacings and can provide a unique perspective for fabricating MCF devices and boosting various MCF applications.

14.
ACS Appl Mater Interfaces ; 13(40): 48119-48126, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34585566

RESUMO

We proposed and realized an all-in-fiber polymer microdisk whispering-gallery mode (WGM) resonator, which is composed of a nanoscale polymer waveguide in conjunction with a polymer microdisk. The resonator is manufactured by femtosecond laser-induced two-photon polymerization inside a single-mode optical fiber, and its transmission spectrum has been investigated theoretically and experimentally. The WGM resonance was excited successfully, exhibiting a high Q factor of 2.3 × 103 at a resonant wavelength of 1416.6 nm. The temperature and humidity responses of the resonator were tested as examples of possible application. Temperature sensitivity of -96 pm/°C when the temperature increased from 25 to 60 °C and humidity sensitivity of 54 pm/%RH when the relative humidity increased from 30 to 90% were obtained. The proposed in-fiber microdisk resonator is highly suitable for detection of microorganisms, bacteria, and single molecules.

15.
Light Sci Appl ; 10(1): 171, 2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34453031

RESUMO

Micromanipulation and biological, material science, and medical applications often require to control or measure the forces asserted on small objects. Here, we demonstrate for the first time the microprinting of a novel fiber-tip-polymer clamped-beam probe micro-force sensor for the examination of biological samples. The proposed sensor consists of two bases, a clamped beam, and a force-sensing probe, which were developed using a femtosecond-laser-induced two-photon polymerization (TPP) technique. Based on the finite element method (FEM), the static performance of the structure was simulated to provide the basis for the structural design. A miniature all-fiber micro-force sensor of this type exhibited an ultrahigh force sensitivity of 1.51 nm µN-1, a detection limit of 54.9 nN, and an unambiguous sensor measurement range of ~2.9 mN. The Young's modulus of polydimethylsiloxane, a butterfly feeler, and human hair were successfully measured with the proposed sensor. To the best of our knowledge, this fiber sensor has the smallest force-detection limit in direct contact mode reported to date, comparable to that of an atomic force microscope (AFM). This approach opens new avenues towards the realization of small-footprint AFMs that could be easily adapted for use in outside specialized laboratories. As such, we believe that this device will be beneficial for high-precision biomedical and material science examination, and the proposed fabrication method provides a new route for the next generation of research on complex fiber-integrated polymer devices.

16.
Opt Express ; 29(13): 20649-20656, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34266149

RESUMO

A high sensitivity optical fiber magnetic field sensor is proposed and implemented by using a helical long-period fiber grating (HLPFG) based on a three-core fiber (TCF) bonded to a U-shaped aluminum (Al) wire. An electrical current flowing through the Al wire in a perpendicular magnetic field can generate Ampere force, which changes the distance between the two arms of the U-shaped Al wire. Thus, when the intensity and direction of the magnetic field change, the bending curvature of TCF-HLPFG bonded to the U-shaped Al wire varies with the change of Ampere force, which is represented as the shift of resonant wavelength in the spectrum. The as-fabricated sensor can respond to the magnetic field direction and the intensity with a range from -15 mT to 15 mT, and the measured sensitivity is 456.5 pm/mT with Al wire electrical current 1A. The proposed sensor has the advantages of low cost, nondestructive measurement method and ease manufacture, and is expected to be applied to weak magnetic field measurements.

17.
Micromachines (Basel) ; 12(3)2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33803684

RESUMO

A fiber optic whispering gallery mode (WGM) resonator was proposed and realized by integrating an inline polymer waveguide with a microsphere mounted on it. The polymer waveguide with a diameter of 1 µm was printed with femtosecond laser-assisted multiphoton polymerization in a section of a grooved hollow-core fiber, which was sandwiched between two single-mode fibers. Two WGW resonators assembled with microspheres of different sizes were prepared. The transmission spectra of those stimulated WGMs were investigated both in simulation and experimentally. The temperature response of the resonators was particularly studied, and a linear sensitivity of -593 pm/°C was achieved from 20 °C to 100 °C.

18.
ACS Appl Mater Interfaces ; 12(29): 33163-33172, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32496752

RESUMO

Hydrogen as an antioxidant gas has been widely used in the medical and biological fields for preventing cancer or treating inflammation. However, controlling the hydrogen concentration is crucial for practical use due to its explosive property when its volume concentration in air reaches the explosive limit (4%). In this work, a polymer-based microcantilever (µ-cantilever) hydrogen sensor located at the end of a fiber tip is proposed to detect the hydrogen concentration in medical and biological applications. The proposed sensor was developed using femtosecond laser-induced two-photon polymerization (TPP) to print the polymer µ-cantilever and magnetron sputtering to coat a palladium (Pd) film on the upper surface of the µ-cantilever. Such a device exhibits a high sensitivity, roughly -2 nm %-1 when the hydrogen concentration rises from 0% to 4.5% (v/v) and a short response time, around 13.5 s at 4% (v/v), making it suitable for medical and environmental applications. In addition to providing an ultracompact optical solution for fast and highly sensitive hydrogen measurement, the polymer µ-cantilever fiber sensor can be used for diverse medical and biological sensing applications by replacing Pd with other functional materials.


Assuntos
Hidrogênio/análise , Fibras Ópticas , Polímeros/química , Lasers , Paládio/química , Tamanho da Partícula , Propriedades de Superfície
19.
Oncotarget ; 7(21): 31440-53, 2016 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-27119228

RESUMO

The GDNF (Glial cell line-derived neurotrophic factor)/Ret/Akt signaling pathway is essential to the development of ENS (enteric nervous system) as well as kidney. We previously showed that the HECT-type E3 ligase NEDL2 (Nedd4-like ligase 2) is required for the ENS development by activating GDNF/Ret/Akt. However, the underlying mechanism remains unknown. Here we show that in addition to ENS, NEDL2 is also pivotal for kidney development since about 1/3 of Nedl2-deficient mice displayed postnatal unilateral or bilateral kidney hydronephrosis. Double knockout of Nedl1 and Nedl2 in mice leads to postnatal lethal within 2 weeks and the phenotypes resemble those of Nedl2 single knockout mice. Surprisingly, its close member NEDL1 is dispensable for ENS and kidney function and the reason is lack of NEDL1 expression in these systems during early development. Furthermore, biochemical analysis indicated that NEDL2 appears to act like a scaffold protein to recruit SHC, Grb2, PI3K (p110 and p85), PDK1 and Akt together to promote the signaling transduction. Intriguingly, we found that NEDL2 harbours intrinsic Nedd8 ligase activity with cysteine 1341 as the core site. NEDL2 upregulates GDNF-stimulated Akt activity dependent of its Nedd8 ligase activity but not its ubiquitin ligase activity. These findings demonstrate that NEDL2 but not NEDL1 is required for ENS and kidney development in a unique Nedd8 ligase-dependent manner.


Assuntos
Sistema Nervoso Entérico/metabolismo , Rim/metabolismo , Proteína NEDD8/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Sistema Nervoso Entérico/crescimento & desenvolvimento , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Células HEK293 , Humanos , Rim/crescimento & desenvolvimento , Células MCF-7 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-ret/metabolismo , Interferência de RNA , Transdução de Sinais , Ubiquitina-Proteína Ligases/genética
20.
J Biol Chem ; 290(42): 25512-21, 2015 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-26306042

RESUMO

Raf kinases are important components of the Ras-Raf-Mek-Erk pathway and also cross-talk with other signaling pathways. Araf kinase has been demonstrated to inhibit TGF-ß/Smad2 signaling by directly phosphorylating and accelerating degradation of activated Smad2. In this study, we show that the araf gene expresses in zebrafish embryos to produce a shorter transcript variant, araf-tv2, in addition to the full-length variant araf-tv1. araf-tv2 is predicted to encode a C-terminally truncated peptide without the kinase activity domain. Araf-tv2 can physically associate with Araf-tv1 but does not antagonize the inhibitory effect of Araf-tv1 on TGF-ß/Smad2 signaling. Instead, Araf-tv2 interacts strongly with Kras and Nras, ultimately blocking MAPK activation by these Ras proteins. In zebrafish embryos, overexpression of araf-tv2 is sufficient to inhibit Fgf/Ras-promoted Erk activation, mesodermal induction, dorsal development, and neuroectodermal posteriorization. Therefore, different isoforms of Araf may participate in similar developmental processes but by regulating different signaling pathways.


Assuntos
Isoenzimas/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas c-raf/metabolismo , Transdução de Sinais , Peixe-Zebra/embriologia , Animais , Linhagem Celular , Desenvolvimento Embrionário , Fatores de Crescimento de Fibroblastos/metabolismo , Humanos , Isoenzimas/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Proto-Oncogênicas c-raf/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...